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Integration of an EMO-based Preference Elicitation Scheme
into a Multi-objective ACO Algorithm for
Time and Space Assembly Line Balancing

Manuel Chica, Óscar Cordón, Sergio Damas and Joaquı́n Bautista

Abstract— In this paper, we consider the incorporation of
user preferences based on Nissan automotive company’s domain
knowledge into a multi-objective search process for assembly
line balancing. We focus on the Time and Space Assembly Line
Balancing problem, a more realistic variant of this family of
problems considering the joint minimisation of the number of
stations and their area in the assembly line configuration. The
multi-objective optimisation algorithm considered is based on
Ant Colony Optimisation, a research area where the considera-
tion of multi-criteria decision making issues is still not extended.
The proposed approach borrows a successful preference scheme
from the evolutionary multi-objective optimisation community,
which provides experts with solutions of their contextual inter-
est in the objective space. The expressions of the considered
preferences are based on the Nissan plant designer’s expert
knowledge and on real-world economical variables. Using the
real data of the Nissan Pathfinder engine, an experimental study
is carried out to obtain the most preferred solutions for the
decision makers in six different Nissan scenarios.

I. INTRODUCTION

AN assembly line is made up of a number of worksta-

tions, arranged in series and in parallel, through which

the work progresses on a product flows, thus composing

a flow-oriented production system. Production items of a

single type (single-model) or of several types (mixed-model)

visit stations successively, where a subset of tasks of known

duration are performed on them. Assembly lines are of great

importance in the production of high quantity standardised

commodities and more recently even gained importance in

low volume production of customised products [1].

The assembly line configuration involves determining an

optimal assignment of a subset of tasks to each station of

the plant fulfilling certain time and precedence restrictions.

In short, the goal is to achieve a grouping of tasks that

minimises the inefficiency of the line or its total downtime

and that respects all the constraints imposed on the tasks

and on the stations. Such problem is called assembly line

balancing (ALB) [2] and arises in mass manufacturing with

a significant regularity both for the first-time installation of

the line or when reconfiguring it. It is thus a very complex
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combinatorial optimisation problem (known to be NP-hard)

of great relevance for managers and practitioners.

Bautista and Pereira recently proposed a more realistic

framework, the Time and Space Assembly Line Balancing

Problem (TSALBP) [3]. This framework considers an ad-

ditional space constraint to become a simplified but closer

version to real-world problems. In this paper we tackle the

1/3 variant of the TSALBP, which tries to minimise the

number of stations and their area for a given product cycle

time, a very complex and realistic multi-criteria problem in

the automotive industry.

In our previous work [4], we successfully solved the

TSALBP-1/3 by means of a multi-objective ant colony op-

timisation (MOACO) proposal [5], the Multiple Ant Colony

System (MACS) algorithm [6]. In [7], the latter work was

extended by incorporating problem-specific information pro-

vided by the plant experts in the form of a priori preferences

to discriminate between those promising line configurations

having the same objective values, i.e., the same trade-off

between the number of stations and their area. We based

our study on the idea that in the same conditions, a Nissan

decision maker (DM) would prefer a solution with a more

balanced stations configuration since it provides less human

resources’ conflicts. Thus, the size of the efficient solutions

set was reduced by providing the plant manager with only a

single line configuration for each objective value trade-off.

In this contribution, we aim to extend the latter work by

incorporating the elicitation of preferences in the objective

space, tackling an even more important task to ease the

Nissan plant manager’s work: the reduction of the efficient

frontier size by only focusing on the most interesting specific

portion to the DM according to the economic factors of the

country where the Nissan plant is located. These preferences

will change with respect to the final location of the industrial

plant (scenario). Hence, we will use six real scenarios around

the world to incorporate preferences in the objective space

into the MACS algorithm. Preferences will be defined by

setting goals and using the evolutionary multi-objective op-

timisation (EMO) preference incorporation model proposed

by Deb in [8], [9]. The use of such a scheme in a MOACO

algorithm constitutes one of the novelties of this work.

Our MACS algorithm with preferences will be tested on

both academic real-like TSALBP-1/3 instances and a real-

world Nissan instance which has specific peculiarities with

respect to the others. The latter corresponds to the assembly

process of the Nissan Pathfinder engine, developed at the
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Nissan industrial plant in Barcelona (Spain). Real scenarios

and cost data are used to test the behaviour of the algorithms.

The paper is structured as follows. In Section II, the prob-

lem formulation and our MOACO proposal are explained.

Then, a brief study on the different ways of incorporating

preferences in multi-objective optimisation (MOO) in gen-

eral, and metaheuristics for MOO, in particular, is shown in

Section III. In Section IV, real industrial costs and variables

to elicitate preferences are introduced. We explain Deb’s

approach, the experimental setup, and check out the perfor-

mance of the resulting preference-based MOACO algorithm

on different Nissan scenarios in Section V. Finally, some

concluding remarks are discussed in Section VI.

II. PRELIMINARIES

In this section the problem preliminaries and our previous

MOACO proposal are presented. First, an overview of the

assembly line balancing problem is discussed. Then, the main

features of the MACS algorithm are briefly described. In the

last subsection, the experimental setup is shown.

A. The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided up into

a set V of n tasks. Each task j requires an operation time

for its execution tj > 0 that is determined as a function of

the manufacturing technologies and the employed resources.

Each station k is assigned to a subset of tasks Sk (Sk ⊆ V ),

called its workload. A task j is assigned to a station k.

Each task j has a set of direct predecessors, Pj , which

must be accomplished before starting it. These constraints

are normally represented by means of an acyclic precedence

graph, whose vertices stand for the tasks and where a directed

arc (i, j) indicates that task i must be finished before starting

task j on the production line. Thus, if i ∈ Sh and j ∈ Sk,

then h ≤ k must be fulfilled. Each station k presents a station

workload time t(Sk) that is equal to the sum of the tasks’

lengths assigned to the station k. SALBP [2] focuses on

grouping tasks in workstations by an efficient and coherent

way. There is a large variety of exact and heuristic problem-

solving procedures for it [10].

The need of introducing space constraints in the assembly

lines’ design is based on two main reasons: (a) the length of

the workstation is limited in the majority of the situations,

and (b) the required tools and components to be assembled

should be distributed along the sides of the line. Hence, an

area constraint may be considered by associating a required

area aj to each task j and an available area Ak to each

station k that, for the sake of simplicity, we shall assume

it to be identical for every station and equal to A : A =
max∀k∈{1..n}{Ak}. Thus, each station k requires a station

area a(Sk) that is equal to the sum of areas required by the

tasks assigned to station k.

This leads us to a new family of problems called TSALBP

in [3]. It may be stated as: given a set of n tasks with their

temporal tj and spatial aj attributes (1 ≤ j ≤ n) and a

precedence graph, each task must be assigned to a single

station such that: (i) every precedence constraint is satisfied,

(ii) no station workload time (t(Sk)) is greater than the cycle

time (c), and (iii) no area required by any station (a(Sk)) is

greater than the available area per station (A).

TSALBP presents eight variants depending on three op-

timisation criteria: m (the number of stations), c (the cycle

time) and A (the area of the stations). Within these variants

there are four multi-objective problems and we will tackle

one of them, the TSALBP-1/3. It consists of minimising the

number of stations m and the station area A, given a fixed

value of the cycle time c. We chose this variant because it

is quite realistic in the automotive industry since the annual

production of an industrial plant (and therefore, the cycle

time c) is usually set by some market objectives. Besides, the

search for the best number of stations and areas makes sense

if we want to reduce costs and make workers’ day better by

setting up less crowded stations. For more information we

refer to [4].

B. A MACS algorithm to solve TSALBP 1/3

In this section, a brief summary of our previous multi-

objective proposal based on the MACS algorithm is pre-

sented. The complete MACS description can be found in

[6], and our proposal is detailed in [4].

MACS was proposed as an extension of ACS [11] to deal

with multi-objective problems. MACS uses one pheromone

trail matrix, τ , and several heuristic information functions, ηk

(in our case, η0 for the duration time of each task tj , and η1

for their area aj). The transition rule is slightly modified to

attend to both heuristic information functions. Since MACS

is Pareto-based, the pheromone trails are updated using the

current non-dominated set of solutions (Pareto archive).

Since the number of stations is not fixed, we use a

constructive and station-oriented approach (as usually done

for the SALBP [10]) to face the precedence problem. Thus,

our algorithm will open a station and select one task till a

stopping criterion is reached. Then, a new station is again

opened to be filled.

Experiments showed that the performance is better if

MACS is only guided by the pheromone trail information.

Such information has to memorise which tasks are the most

appropriate to be assigned to a station. Hence, pheromone has

to be associated to a pair (stationk, taskj), k = 1...n, j =
1...n, so our pheromone trail matrix is bi-dimensional. We

used two station-oriented single-objective greedy algorithms

to obtain the initial pheromone value τ0.

We also introduced a new mechanism in the construction

algorithm to close a station according to a probability distri-

bution, given by the filling rate of the station: p(closing) =
(
∑

∀i∈Sk
ti
)

/c. It helps the algorithm to reach more diverse

solutions for closing stations by a deterministic process.

The probability is computed at each construction step so its

value is progressively increased. Then, a random number is

generated to decide if the station is closed.

Besides, there is a need to achieve a better intensification-

diversification trade-off. That was achieved by introducing

different filling thresholds associated to the ants. These

thresholds make the different ants have a different search
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behaviour. The higher the ant’s threshold, the more filled the

station will be (there will be less possibilities to close the

station during its creation process).

In this way, the ant population will show a highly diverse

search behaviour, allowing the algorithm to properly explore

the different parts of the optimal Pareto front by appropriately

spreading the generated solutions.

III. HANDLING PREFERENCES IN MOO AND EMO

From the operations research (OR) perspective, there has

been much work on how and when to incorporate decisions

from the DM into the search process. Numerous techniques

have been applied to solve multi-criteria decision making

(MCDM) problems considering the DM domain knowledge

such as outranking relations, utility functions, preference

relations or desired goals [12], [13].

One of the most important question is the moment when

the DM is required to provide preference information. There

are basically three ways of doing so [13]:

• Prior to the search (a priori approaches): there is a

considerable body of work in OR involving approaches

performing prior articulation of preferences. The main

difficulty and disadvantage of the approach is finding

this preliminary global preference information.

• During the search (interactive approaches): interactive

approaches have been normally favoured by researchers

because the DM can get better perceptions influenced

by the total set of elements in a situation or perhaps,

some preferences cannot be expressed analytically but

with a set of beliefs. Thus, the OR community has been

working with this approach for a long time.

• After the search (a posteriori approaches): the main

advantage of incorporating preferences after the search

is that no utility function is required for the analysis.

However, many real-world problems are too large and

complex to be solved using this technique, or even

the number of elements of the Pareto optimal set that

tends to be generated is normally too large to allow an

effective analysis from the DM.

Concerning the field of EMO and other metaheuristics

for MOO, most of the existing work is mainly based on

a posteriori approaches where the intervention of DMs

is done once the algorithm has reached the best possible

approximation of the efficient solutions set. However, this is

sometimes problematic as the process of selecting the most

convenient set of solutions from a complete efficient set is

not particularly trivial. In most of the cases, the DM is unable

to choose one solution among hundreds or thousands [14].

Nevertheless, in the last few years we can find several

EMO approaches based on eliciting goal information prior to

the search (a priori approaches) [9], [15] as well as handling

preferences during the search (interactive approaches, as

done for instance in [16] and in [17]), which are becoming

more and more usual and important. A comprehensive survey

on the incorporation of preferences in EMO is presented

in [18]. In addition, some EMO researchers are starting

to define a global framework to consider MCDM as a

conjunction of three components: search, preference trade-

offs, and interactive visualisation [19].

IV. NISSAN SCENARIOS BASED ON THE MANUFACTURING

LOCATION COSTS

When a DM has a set of possible solutions (the non-

dominated solutions of the efficient Pareto set) one of the

most used criterion to choose one or a subset of them is

taking into account their cost of development. In order to

define some cost variables in the TSALBP with the latter

aim, we will consider two types of operational costs:

• Labour cost: associated to the employees (and conse-

quently, to the number of stations m). It is defined as

an average labour cost per employee in the manufacture

of motor vehicles industry group. Real data is used in

this paper (taken from the International Labour Organ-

isation 1) and US dollars are considered as currency.

Other indicators related to labour costs might be used

as well (productivity, working hours, etc.).

• Industrial space cost: directly associated to the area A.

In our case, it was collected from the 2007 Industrial

Space Across the World report 2. The used units for

space cost are US dollars per square feet in one year.

Naturally, the operational costs are not fixed. Their dif-

ferences are subject to the location a manager wants to

set up the factory. Thus, one efficient solution (assembly

line configuration) is not well-defined enough if we do not

consider its possible location, that is, there is not enough

information for the MOO algorithm to search for the desired

efficient solution set. Since our real-world problem belongs

to a Nissan industrial plant, the candidate locations for the

industrial solution may perfectly be one of the actual Nissan

factory locations (scenarios). All the Nissan scenarios over

the world are red-coloured in Figure 1. We have selected six

of these countries to carry out our study, which together with

their real costs 3 are shown in Table I.

Fig. 1. World locations of Nissan Motors factories.

1http://laborsta.ilo.org
2Reported by Cushman & Wakefield Research,

http://www.cushwake.com
3Productivity is measured as the Gross Domestic Product (purchasing

power parity (PPP) converted) per hour worked. This is the value of all
final goods and services produced within a nation in a given year, divided by
the total annual hours worked (source: Groningen Growth and Development
Centre (University of Groningen)).
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TABLE I

LABOUR COST, PRODUCTIVITY AND INDUSTRIAL SPACE COST

Country Labour cost Productivity Labour cost Industrial space
per hour ($) biased by ($/sq.ft.year)

productivity

Spain 28.36 21.67 1.31 15.59

Japan 30.60 25.61 1.19 19.51

Brazil 8.79 7.99 1.10 10.05

UK 31.61 30.13 1.05 28.91

USA 30.39 35.29 0.86 11.52

Mexico 6.57 9.24 0.71 5.02

From this data, industrial experts are able to set the

importance to the achievement of the two objectives, the

number of stations m, and their area A, in order to define

some preferences, or even to set some goals depending on

the countries the industrial plant wants to be established. For

example, in those countries where the industrial space cost

(respectively, the labour cost) is quite expensive, the objective

m (respectively, the objective A) will be more important to

be minimised and hence its weight will be higher.

V. SETTING THE PREFERENCES BY MEANS OF GOALS FOR

THE OBJECTIVES m AND A

In this section, we first introduce the EMO-based pref-

erence elicitation scheme which will be included in our

MOACO algorithm. Then, the experimental setup and the

analysis of results are presented.

A. Deb’s approach for EMO-based preference elicitation

The aim of goal programming is finding a solution which

minimises the deviation d between the achievement of the

goal and the aspiration target t [20]. These goals can be

used as a set of preferences defined by the expert. There

can be different types of goal criteria from which we have

chosen four of the most important, that is: less-than-equal-

to (f(x) ≤ t), greater-than-equal-to (f(x) ≥ t), equal-to

(f(x) = t) and within a range (f(x) ∈ [tl, tu]). For example,

we can set that the total area of an industry plant I could be

less than a number of specified squared metres or our number

of stations needs to be, if possible, within an interval of 100

and 200. In our specified scenarios, some preference relations

can be established by a Nissan expert, as done in Table II. We

have not considered the greater-than-equal-to relation since

it does not make sense in a minimisation problem like ours.

Deb proposed a technique to transform goal programming

into MOO problems which are then solved using an EMO

algorithm [8], [9]. The objective function of the EMO

algorithm attempts to minimise the absolute deviation from

targets to objectives. This approach was only used to perform

the transformation from goals to objectives in [8]. However,

it can be also used to incorporate preferences into any MOO

algorithm, like our MACS algorithm for the TSALBP-1/3.

The goal programming problem can be modified to incor-

porate preferences to the objective function by changing the

original objective functions as follows:

Here, the operator 〈〉 returns the value of the operand if it

is positive, otherwise it gives value zero. We have translated

TABLE II

GOAL CRITERIA FOR OUR OBJECTIVES: NUMBER OF STATIONS m, AND

THE AREA A (DIFFERENT RELATIONAL OPERATORS ARE USED FOR EACH

INSTANCE)

Problem instance Spain Japan UK

barthol2 m = 51 m = 60 m = 68
(=,≤) A ≤ 120 A ≤ 100 A ≤ 90
barthold m ≤ 8 m ≤ 14 m ≤ 16
(∈,≤) A ≤ 650 A ≤ 500 A ≤ 400
weemag m ≤ 30 m ≤ 35 m ≤ 45
(≤,∈) A ∈ [56, 61] A ∈ [46, 51] A ∈ [40, 45]
Nissan+ m = 16 m = 23 m = 27
(=, =) A = 5.7 A = 3.8 A = 3

Goal Objective function

fi(x) ≤ tj minimise 〈fj(x)− tj〉
fi(x) ≥ tj minimise 〈tj − fj(x)〉
fi(x) = tj minimise |fj(x)− tj |

fi(x) ∈ [tl
j , tu

j ] minimise max(〈tl
j − fj(x)〉, 〈fj(x)− tu

j 〉)

our preference goals for each country in Table II to mod-

ified objective functions following the conversion of Deb’s

approach. Since our defined goals are generic, our six initial

scenarios have been grouped into only three, that is Spain,

Japan and UK. Due to their economic characteristics, Spain

is focused on line configurations that give more importance

to the labour costs (objective m, the number of stations), UK

needs solutions with less industrial cost area (objective A),

and Japan is more interested in a trade-off between them.

B. Experimental setup

The problem instances and the parameter values used in

this contribution are detailed as follows:

1) Problem instances: Three real-like problem instances

with different features have been selected for the experi-

ments: barthol2, barthold, and weemag. Originally,

these instances were SALBP-1 instances 4 only having time

information. However, we created their area information by

reverting the task graph to make them bi-objective (as in [3]).

In addition, we considered a real-world problem corre-

sponding to the assembly process of the Nissan Pathfinder

engine, developed at the Nissan industrial plant in Barcelona

(Spain) 5. The assembly of these engines is divided in 378

operation tasks (grouped into 140). For more details about

the Nissan instance, the reader is referred to [3], in which all

the tasks and their time and area information are specified.

2) Parameter values: The initial MACS algorithm and all

its variants with preferences have been run ten times with

ten different seeds for each of the three real-like instances

and the Nissan instance. Every considered parameter value

is shown in Table III.

C. Analysis of results

The Pareto fronts generated by MACS with goals for the

different scenarios explained in Section V-A are shown in

4Available at http://www.assembly-line-balancing.de
5The problem has been simplified by merging the data of the different

kinds of engines that are assambled in the industrial cell.
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TABLE III

USED PARAMETER VALUES

Parameter Value
Number of runs 10
Max. run time 900 seconds

PC Specs. Intel PentiumTM D
2 CPUs at 2.80GHz

Operating System CentOS Linux 4.0
GCC 3.4.6

Number of ants 10
β 2
ρ 0.2
q0 0.2
Ants’ thresholds {0.2, 0.4, 0.6, 0.7, 0.9}

(2 ants per threshold)

Figures 2 and 3. We can check how the MACS algorithm

for a given location behaves in comparison with MACS for

the other locations. These approximations of the efficient

frontiers show how the use of goals in the different scenarios

gets solutions belonging to different areas.

The solutions for the Spanish plant manager will have the

lowest number of stations as well as those for the British

expert will have the minimum station area of the whole

Pareto front. In the case of the Japan scenario, configurations

with a good trade-off between number of stations and area

are achieved. Only in the barthol2 instance (Figure 2),

Japanese expert’s solutions overlap those for the British

expert. In the rest of instances, each scenario has its own

Pareto front area, distinct to the others. Hence, we can

conclude the preference scheme is working properly when

it is incorporated into the MACS algorithm.

Since the location-specific MACS focuses on a different

Pareto front region, its solutions will not be dominated by the

others and will dominate the rest of the variants’ solutions.

Generally, the convergence of the algorithm incorporating

goal preferences is the same than in “MACS no specific

location”, although sometimes the set of solutions belonging

to “MACS no specific location” achieves better convergence

than the ones from location-specific MACS.

In order to check the latter statement and to measure

the performance of the variants of the algorithms, we have

considered the binary coverage metric C [18] to compare the

obtained Pareto sets. Graphics in Figure 4 are box-plots [21]

based on C metric which compare the different algorithms

two by two by calculating the dominance degree of their

respective Pareto sets. Each rectangle contains four box-plots

representing the distribution of the C values for a certain

ordered pair of algorithms in our four problem instances.

Each box refers to algorithm A in the corresponding row

and algorithm B in the corresponding column and gives the

fraction of B covered by A (C(A,B)). In Figure 4, the top

right box represents the fraction of solutions of MACS for

UK covered by the non-dominated sets produced by MACS

no location. In each box, the minimum and maximum values

are the lowest and highest lines, the upper and lower ends of

the box are the upper and lower quartiles, and a thick line

Fig. 2. Pareto fronts for the barthol2 and barthold instances for
different scenarios using Deb’s alternative.

within the box shows the median.

In Figure 4 we can see how MACS for Japan gets a low

number of solutions dominated by the other algorithms. The

reason is that MACS for Japan spreads its search along all

the Pareto front region, and this is not done by the other

variants. In general, a slightly better convergence of MACS

without preferences with respect to MACS with preferences

can be observed.

VI. CONCLUDING REMARKS

In this contribution, we have studied the inclusion of user

preferences in the objective space based on Nissan’s domain

knowledge to tackle the TSALBP-1/3. A previous MOACO

proposal based on the MACS algorithm was extended and

improved by using a preference elicitation scheme borrowed

from the EMO community. It consists of defining a set of

goals to reach only the Pareto front region which has the

desirable trade-off between the number of stations m and

their area A. Bi-objective variants of three real-like ALB

problem instances as well as a real problem from a Nissan

industrial plant in Spain have been used in an experimental

study for six different Nissan scenarios. The application of

these advanced preferences to the different Nissan scenarios

161



Fig. 3. Pareto fronts for the weemag and Nissan instances for different
scenarios using Deb’s alternative.

were actually successful since they helped the algorithm to

provide efficient solutions sets only focused on the solutions

that plant managers are more interested on.

Some future works arise from this contribution: (i) more

advanced ways of incorporating a priori expert knowledge

in the algorithm, and (ii) the use of interactive procedures

within the algorithm [17], [22].
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