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Adding diversity to a multiobjective ant colony algorithm for
time and space assembly line balancing

Manuel Chica, Óscar Cordón, Sergio Damas and Joaquı́n Bautista

Abstract—We present a new mechanism to introduce di-
versity to a multiobjective algorithm based on Ant Colony
Optimization to solve a more realistic extension of a classical
industrial problem: Time and Space Assembly Line Balancing.
Promising results are shown after applying the designed Mul-
tiobjective Ant Colony Optimization algorithm to ten real-like
problem instances.

I. INTRODUCTION

AN assembly line is made up of a number of work-
stations, arranged either in series or in parallel. These

stations are linked together by a transport system that aims to
supply materials to the main flow and to move the production
items from one station to the next one.

Since the manufacturing of a production item is divided
into a set of tasks, a usual and difficult problem is to
determine how these tasks can be assigned to the stations
fulfilling certain restrictions. Consequently, the aim is to get
an optimal assignment of subsets of tasks to the stations of
the plant. Moreover, each task requires an operation time
for its execution which is determined as a function of the
manufacturing technologies and the employed resources.

A family of academic problems –referred to as simple
assembly line balancing problems (SALBP)– was proposed
to model this situation [1], [2]. Taking this family as a base
and adding spatial information to enrich it, Bautista and
Pereira recently proposed a more realistic framework: the
time and space assembly line balancing problem (TSALBP)
[3]. This framework considers an additional space constraint
to become a simplified version of real-world problems. The
new space constraint emerged due to the study of the specific
characteristics of the Nissan plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have
a multicriteria nature [4] because they contain three con-
flicting objectives to be minimised: the cycle time of the
assembly line, the number of the stations, and the area of
this stations. In this paper we have selected the TSALBP-
1/3 variant which tries to minimise the number of stations
and their area for a given product cycle time. We have made
this decision because it is quite realistic in the automotive
industry. The final aim is to provide the plant manager with

Manuel Chica, Óscar Cordón and Sergio Damas are with the European
Centre for Soft Computing, 33600 Mieres, Spain (email: {manuel.chica,
oscar.cordon, sergio.damas}@softcomputing.es). Joaquı́n Bautista is with
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a well spread Pareto front of solutions with different trade-
offs between the number of stations and the area of these
stations. This will allow the plant manager to choose the
most appropriate one for his/her industrial context.

TSALBP-1/3 has an important set of constraints like
precedences or cycle time limits for each station. Thus, the
use of constructive approaches like Ant Colony Optimization
(ACO) [5] is more convenient than others like local or global
search procedures [6]. ACO is a constructive metaheuristic
inspired by the shortest path searching behavior of various
ant species. Many different ACO algorithms have succes-
fully solved different combinatorial problems such as the
traveling salesman problem, the quadratic assignment prob-
lem, the sequential ordering problem, production scheduling,
timetabling, project scheduling, vehicle and telecommunica-
tion routing, and investment planning [5].

Due to the two aforementioned reasons, i.e., the multi-
objective nature of the problem and the need to solve it
through constructive algorithms, a sensible choice is to use a
Pareto-based multiobjective ACO (MOACO) algorithm [7].
This family involves different variants of ACO algorithms
which aim to find not only one solution, but a set of the best
solutions according to several conflicting objective functions.

In [8], we succesfully tackled the TSALBP-1/3 by means
of a specific procedure based on the Multiple Ant Colony
System (MACS) algorithm [9]. However, we noticed that
intensification could be too high in a specific region of the
Pareto front because of the station-oriented approach that
was accomplished. In particular, the approximations to the
Pareto fronts obtained showed a significant lack of diversity
and an excessive convergence to the left-most region of the
objective space. That is an undesirable situation for the plant
managers who should be provided with all the configurations
of their contextual interest in the objective space.

In this paper we aim to introduce a new mechanism to
avoid that local convergence behaviour. The aim is to induce
the generation of more diverse solutions by means of a multi-
colony approach [10] according to different station filling
rates. Our MACS-TSALBP-1/3 algorithm with and without
the new diversification component will be tested on ten real-
like TSALBP-1/3 instances.

The paper is structured as follows. In Section II, the
problem formulation and the previous MOACO proposal
are explained. Then, the proposed multi-colony approach to
improve the MACS algorithm is described in Section III.
The experimentation setup as well as the analysis of results
is presented in Section IV. Finally, some concluding remarks
are discussed in Section V.



II. PRELIMINARIES

In this section the problem preliminaries and our previous
MOACO proposal are presented. First, an overview of the
TSALBP is discussed. Then, the main features of the MACS
algorithm are briefly described. Finally, our MACS approach
to tackle the TSALBP-1/3 variant is detailed.

A. The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided up into
a set V of n tasks. Each task j requires an operation time
for its execution tj > 0 that is determined as a function of
the manufacturing technologies and the employed resources.
Each station k is assigned to a subset of tasks Sk (Sk ⊆ V ),
called its workload. A task j is assigned to a station k.

Each task j has a set of direct predecessors, Pj , which
must be accomplished before starting it. These constraints
are normally represented by means of an acyclic precedence
graph, whose vertices stand for the tasks and where a directed
arc (i, j) indicates that task i must be finished before starting
task j on the production line. Thus, if i ∈ Sh and j ∈ Sk,
then h ≤ k must be fulfilled. Each station k presents a station
workload time t(Sk) that is equal to the sum of the tasks’
lengths assigned to the station k. SALBP [2] focuses on
grouping tasks in workstations by an efficient and coherent
way. There is a large variety of exact and heuristic problem-
solving procedures for it [11].

The need of introducing space constraints in the assembly
lines’ design is based on two main reasons: (a) the length of
the workstation is limited in the majority of the situations,
and (b) the required tools and components to be assembled
should be distributed along the sides of the line. Hence, an
area constraint may be considered by associating a required
area aj to each task j and an available area Ak to each
station k that, for the sake of simplicity, we shall assume
it to be identical for every station and equal to A : A =
max∀k∈{1..n}{Ak}. Thus, each station k requires a station
area a(Sk) that is equal to the sum of areas required by the
tasks assigned to station k.

This leads us to a new family of problems called TSALBP
in [3]. It may be stated as: given a set of n tasks with their
temporal tj and spatial aj attributes (1 ≤ j ≤ n) and a
precedence graph, each task must be assigned to a single
station such that: (i) every precedence constraint is satisfied,
(ii) no station workload time (t(Sk)) is greater than the cycle
time (c), and (iii) no area required by any station (a(Sk)) is
greater than the available area per station (A).

TSALBP presents eight variants depending on three op-
timisation criteria: m (the number of stations), c (the cycle
time) and A (the area of the stations). Within these variants
there are four multi-objective problems and we will tackle
one of them, the TSALBP-1/3. It consists of minimising
the number of stations m and the station area A, given a
fixed value of the cycle time c, mathematically formulated
as follows:

f0(x) = m =
UBm∑
k=1

max
j=1,2,...,n

xjk (1)

f1(x) = A = max
k=1,2,...,UBm

n∑
j=1

ajxjk , (2)

where UBm is the upper bound for the number of stations
m, aj is the area information for task j, xjk is a decision
variable taking value 1 if task j is assigned to station k, and
n is the number of tasks.

We chose this variant because it is quite realistic in
the automotive industry since the annual production of an
industrial plant (and therefore, the cycle time c) is usually
set by some market objectives. For more information we refer
the interested reader to [12].

B. Multiple ant colony system

MACS was proposed as a was proposed as a multiobjective
extension of the Ant Colony Systema (ACS) [13]. MACS
uses a single pheromone trail matrix τ and several heuristic
information functions ηk (in our case, η0 for the operation
time tj of each task j and η1 for its area aj). From now
on, we restrict the description of the algorithm to the case
of two objectives. In this way, an ant moves from node i to
node j by applying the following transition rule:

j =
{

arg maxj∈Ω(τij · [η0
ij ]

λβ · [η1
ij ]

(1−λ)β), if q ≤ q0,

î, otherwise.
(3)

where Ω represents the current feasible neighbourhood of
the ant, β weights the relative importance of the heuristic
information with respect to the pheromone trail, and λ is
computed from the ant index h as λ = h/M , with M
being the number of ants in the colony, q0 ∈ [0, 1] is an
exploitation-exploration parameter, q is a random value in
[0, 1], and î is a node selected according to the probability
distribution p(j):

p(j) =

{
τij ·[η0

ij ]
λβ ·[η1

ij ]
(1−λ)β∑

u∈Ω
τiu·[η0

iu]λβ ·[η1

iu](1−λ)β , if j ∈ Ω,

0, otherwise.
(4)

Every time an ant crosses edge < i, j >, it performs the
local pheromone update as follows: τij = (1−ρ) ·τij +ρ ·τ0

Initially, τ0 is calculated by taking the average costs, f̂0

and f̂1, of each of the two objective functions, f0 and f1,
from a set of heuristic solutions by applying the expression:

τ0 =
1

f̂0 · f̂1
(5)

However, the value of τ0 is not fixed during the algorithm
run, as usual in ACS, but it undergoes adaptation. At the end
of each iteration, every complete solution built by the ants is
compared to the Pareto archive PA which was generated till
that moment. This is done in order to check if a new solution
is a non-dominated one. If so, it is included in the archive



and all the dominated solutions are removed. Then, τ ′
0 is

calculated by applying equation (5) with the average values
of each objective function taken from the current solutions of
the Pareto archive. If τ ′

0 > τ0, being τ0 the initial pheromone
value, pheromone trails are reinitialised to the new value
τ0 = τ ′

0. Otherwise, a global update is performed with each
solution S of the Pareto set approximation contained in PA

applying the following rule on its composing edges < i, j >:

τij = (1 − ρ) · τij +
ρ

f0(S) · f1(S)
(6)

C. A MACS algorithm for the TSALBP-1/3

In this section we describe the customisation made on all
the components of the general MACS algorithm scheme to
build our solution methodology.

1) Heuristic information: MACS works with two differ-
ent heuristic information values, η0

j and η1
j , each of them

associated to one criterion. In our case, η0
j is related with

the required operation time for each task and η1
j with the

required area:

η0
j =

tj
c
· | Fj |
maxi∈Ω | Fi | η1

j =
aj

UBA
· | Fj |
maxi∈Ω | Fi |

where UBA is the upper bound for the area (the sum
of all tasks’ areas) and Fj is the set of tasks that come
after task j. The second term in both formulae represents
a ratio between the number of successors of the task j
(the cardinality of the successors set Fj) and the maximum
number of successors of any eligible task belonging to the
ant’s feasible neighbourhood Ω. Both sources of heuristic
information range in [0, 1], with 1 being the most preferable.

As usual in the SALBP, tasks having a large value of
time (a large duration) and area (occupying a lot of space)
are preferred to be firstly allocated in the stations. Apart
from area and time information, we have added another
information related to the number of successors of the task
which was already used in [3]. Tasks with a larger number
of successors are preferred to be allocated first.

Heuristic information is one-dimensional since it is only
assigned to tasks. In addition, it can be noticed that heuristic
information has static and dynamic components. Tasks’ time
tj and area aj are always fixed while the successors rate is
changing through the constructive procedure. This is because
it is calculated by means of the candidate list of feasible and
non-assigned tasks at that moment.

2) Pheromone trail and τ0 calculation: The pheromone
trail information has to memorise which tasks are the most
appropriate to be assigned to a station. Hence, pheromone
has to be associated to a pair (stationk, taskj), being k =
1, ..., n and j = 1, ..., n. In this way, contrary to heuristic
information, our pheromone trail matrix has a bi-dimensional
nature since it links tasks with stations.

In every ACO algorithm, an initial value for the pheromone
trails has to be set up. This value is called τ0 and it is
normally obtained from an heuristic algorithm. We have used
two station-oriented single-objective greedy algorithms, one

per heuristic, to compute it. These algorithms open the first
station and select the best possible task according to their
heuristic information (related either with the duration time
and successors rate η0

j , or the area and successors rate η1
j ).

This process is repeated till there is not any task that can be
included because of the cycle time limit. Then, a new station
must be opened. When no more tasks are to be assigned, the
greedy algorithm finishes. τ0 is then computed from the costs
of the two solutions obtained by the greedy algorithm using
the following MACS equation: τ0 = 1

f0(Stime)·f1(Sarea)
3) Randomised station closing scheme and transition rule:

Our approach follows a station-oriented procedure, which
starts opening a station and selecting the most suitable task
to be assigned. When the current station is loaded maximally,
it is closed and the next one is opened and ready to be filled.
At the beginning, we decided to close the station when it was
full in relation to the fixed cycle time c, as usual in SALBP
and TSALBP applications. We found that this scheme did
not succeed because the obtained Pareto fronts did not have
enough diversity. Thus, we introduced a new mechanism in
the construction algorithm to close the station according to
a probability, given by the filling rate of the station:

p (closing Sk) =

∑
i∈Sk

ti

c
(7)

This probability distribution is updated at each construc-
tion step. A random number is uniformly generated in [0, 1]
after each update to decide whether the station is closed or
not. If the decision is not to close the station, we choose
the next task among all the candidate tasks using the MACS
transition rule and the procedure goes on.

Because of the one-dimensional nature of the heuristic
information, the original transition rule (Equation 3) that
chooses among all the candidate tasks at each step, has been
modified:

j =
{

arg maxj∈Ω(τkj · [η0
j ]λβ · [η1

j ](1−λ)β), if q ≤ q0,

î, otherwise,
(8)

where î is a node selected by means of the following
probability distribution:

p(j) =

{
τkj ·[η0

j ]λβ ·[η1

j ](1−λ)β∑
u∈Ω

τku·[η0
u]λβ ·[η1

u](1−λ)β , if j ∈ Ω,

0, otherwise.
(9)

III. USING A MULTI-COLONY APPROACH ON THE

MACS-TSALBP-1/3 ALGORITHM

The MACS-based TSALBP-1/3 algorithm proposed in [8]
carries the problem of not providing enough intensification
in some Pareto front areas, since there is a low probability
of filling stations completely. Hence, there is a need to find a
better intensification-diversification trade-off. This objective
can be achieved by introducing different filling thresholds
associated to the ants that build the solution. These thresholds
make the different ants in the colony have a different search
behaviour. Thus, the ACO algorithm becomes multi-colony



[10]. In our case, thresholds are set between 0.2 and 0.9 and
they are considered as a preliminary step before deciding to
close a station.

Therefore, the solution construction procedure is modified.
We compute the station closing probability distribution as
usual based on the station current filling rate (equation (7)).
However, only when the ant’s filling threshold has been
overcome, the random decision of either closing a station or
not according to that probability distribution is considered.
Otherwise, the station will be kept opened. Thus, the higher
the ant’s threshold is, the more complete the station will
be likely to be. This is due to the fact that there are less
possibilities to close it during the construction process.

In this way, the ant population will show a highly diverse
search behaviour, allowing the algorithm to properly explore
the different parts of the optimal Pareto fronts by appropri-
ately spreading the generated solutions.

IV. EXPERIMENTATION

A. Problem instances and parameter values

Ten problem instances with different features have been
selected for the experimentation: arc111 with cycle time
limits of c = 5755 and c = 7520 (P1 and P2), barthol2
(P3), barthold (P4), heskia (P5), lutz2 (P6), lutz3
(P7), mukherje (P8), scholl (P9), and weemag (P10).
Originally, these instances were SALBP-1 instances1 only
having time information. However, we have created their area
information by reverting the task graph to make them bi-
objective (as done in [3]).

We run each algorithm 10 times with different random
seeds, setting the time as stopping criteria (900 seconds).
All the algorithms were launched in the same computer:
Intel PentiumTM D with two CPUs at 2.80GHz, and CentOS
Linux 4.0. On the one hand, the values of the parameters
used in all the MACS algorithms with and without the new
diversification component are as follows. We consider ten
different ants, β = 2, and ρ = 0.2. Different values of the
transition rule parameter q0 are also studied. In particular:
q0 = 0.2, 0.5, 0.8. On the other hand, the parameters con-
cerning our proposal on using different filling thresholds are
as follows. There are two ants for each of the five ants’
thresholds considered: {0.2, 0.4, 0.6, 0.7, 0.9}.

B. Metrics of performance

We will consider two different multiobjective metrics [14],
[15] to evaluate the performance of the two variants of the
MACS-based TSALBP-1/3 algorithm.

On the one hand, we selected the hypervolume ratio
(HVR) from the first group. It can be calculated as follows:

HV R =
HV (P )
HV (P ∗)

, (10)

where HV (P ) and HV (P ∗) are the volume (S metric
value) of the approximate Pareto set and the true Pareto
set, respectively. When HV R equals 1, then the approximate

1Available at http://www.assembly-line-balancing.de

Pareto front and the true one are equal. Thus, HV R values
lower than 1 indicate a generated Pareto front that is not as
good as the true Pareto front.

We should notice that the true Pareto fronts are not known
in our real-world problem instances. Thus, we will consider
a pseudo-optimal Pareto set, i.e. an approximation of the
true Pareto set, obtained by merging all the (approximate)
Pareto sets P j

i generated for each problem instance by all the
existing algorithms for the problem in the different runs [12].
Thanks to this pseudo-optimal Pareto set, we can compute
HV R and consider it in our analysis of results.

On the other hand, we have also considered the binary set
coverage metric C to compare the obtained Pareto sets two
by two based on the following expression:

C(P,Q) =
|{q ∈ Q ; ∃p ∈ P : p ≺ q}|

|Q| , (11)

where p ≺ q indicates that the solution p, belonging to the
approximate Pareto set P , dominates the solution q of the
approximate Pareto set Q in a minimization problem.

Hence, the value C(P,Q) = 1 means that all the solutions
in Q are dominated by or equal to solutions in P . The
opposite, C(P,Q) = 0, represents the situation where none
of the solutions in Q are covered by the set P . Note that both
C(P,Q) and C(Q,P ) have to be considered, since C(P,Q)
is not necessarily equal to 1 − C(Q,P ).

We have used boxplots based on the C metric that calcu-
lates the dominance degree of the approximate Pareto sets
of every pair of algorithms (see Figure 1). Each rectangle
contains ten boxplots representing the distribution of the
C values for a certain ordered pair of algorithms in the
ten problem instances (P1 to P10). Each box refers to
algorithm A in the corresponding row and algorithm B in the
corresponding column and gives the fraction of B covered
by A (C(A,B)).

C. Analysis of results

The experimental results obtained by the two MACS
variants with and without the diversity mechanism can be
seen in the C metric boxplots of Figure 1 and in the
HV Rvalues in Table I. Some conclusions can be reached
from the analysis of the C metric values:

• Comparing both versions of MACS, the original one
with a specific value of q0 and its counterpart multi-
colony extension, we can see that significantly “better”2

results are provided by the latter MACS with thresholds.
It happens regardless of the value of q0, and it is
common in all the problem instances but P5 (heskia).
This is because of the nature of that problem instance,
whose pseudo-optimal Pareto front is not wide enough.
Every solution of this problem instance is found in
the central part of the objective space, so the diversity
introduced by the filling thresholds is not useful.

2When we refer to the best or better performance comparing the C metric
values of two algorithms we mean that the Pareto set derived from one
algorithm significantly dominates that one achieved by the other. Likewise,
the latter algorithm does not dominate the former one to a high degree.



Fig. 1. C metric values represented by means of boxplots comparing MACS with and without multi-colony scheme (i.e. variable filling thresholds).

• We find less performance differences with a lower value
of q0. It makes sense since MACS with higher q0 values
gives more importance to a higher intensification in the
selection procedure and thus, the Pareto fronts are more
similar. Hence, the algorithm does not take advantage
of the diversity induced by the thresholds approach.

• If we compare every MACS variant with and without
thresholds, regardless of the value of q0, the conclusion
is that MACS 0.2 with thresholds is the best approach.
It gets better results than MACS 0.5 and 0.8 with thresh-
olds in every problem instance. It is only dominated by
MACS 0.2 and 0.5 without thresholds in P5. Even in
a non-common problem instance like the latter, results
are good enough.
Hence, the diversity of the task selection procedure (a
low value of q0 parameter) as well as the use of variable
station filling thresholds are both important to solve the
problem appropriately. Nevertheless, if we select MACS
0.8 with thresholds and MACS without thresholds with
lower values of q0 (0.2 and 0.5) to be compared, we
can notice that the former algorithm outperforms the

latter two in five and six problem instances respectively.
On the contrary, the latter two are better in four of
them. All of these algorithms have thus quite similar
results. Consequently, the variable filling thresholds in
isolation are not enough to get a good yield. There
is also a demand for diversity in the randomised task
selection procedure of the algorithm which requires a
good diversification-intensification trade-off.

In general terms, we can draw similar conclusions analyz-
ing the HV R metric values (see Table I). They are always
higher in variants with thresholds as they better converge
towards the true (i.e., pseudo-optimal) Pareto fronts. For
example, that is shown in Figure 2 that graphically shows
the aggregated Pareto fronts corresponding to P3.

V. CONCLUDING REMARKS

In a previous constribution [8] we demonstrated that the
use of a MACS algorithm to tackle the TSALBP-1/3 by
considering a stochastic procedure to decide when to close
a station was a better choice than a pure station-based
approach. Nevertheless, that solution still leads to situations



TABLE I
MEAN AND STANDARD DEVIATION VALUES (IN BRACKETS) OF THE HV R METRIC FOR ALL THE PROBLEM INSTANCES.

A1: MACS 0.2 (without thr.), A2: MACS 0.5 (without thr.), A3: MACS 0.8 (without thr.)
A4: MACS 0.2 (with thr.), A5: MACS 0.5 (with thr.), A6: MACS 0.8 (with thr.)

P1 P2 P3 P4 P5

A1 0.91 (0.005) 0.91 (0.006) 0.86 (0.008) 0.93 (0.005) 0.96 (0.002)
A2 0.91 (0.003) 0.91 (0.008) 0.86 (0.006) 0.93 (0.005) 0.96 (0.002)
A3 0.91 (0.005) 0.91 (0.005) 0.85 (0.005) 0.93 (0.005) 0.96 (0.001)
A4 0.99 (0.001) 0.99 (0.002) 0.98 (0.001) 0.97 (0.001) 0.96 (0.006)
A5 0.98 (0.002) 0.99 (0.002) 0.98 (0.001) 0.97 (0.001) 0.95 (0.003)
A6 0.98 (0.001) 0.98 (0.001) 0.98 (0.001) 0.97 (0.002) 0.94 (0.005)

P6 P7 P8 P9 P10

A1 0.89 (0.01) 0.91 (0.008) 0.91 (0.005) 0.87 (0.003) 0.93 (0.007)
A2 0.89 (0.008) 0.91 (0.01) 0.92 (0.008) 0.87 (0.004) 0.93 (0.009)
A3 0.89 (0.008) 0.91 (0.011) 0.92 (0.005) 0.87 (0.004) 0.92 (0.011)
A4 0.99 (0.001) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001)
A5 0.99(0) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001)
A6 0.99 (0.005) 0.99 (0.001) 0.99 (0.002) 0.99 (0.001) 0.99 (0.001)
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Fig. 2. Pareto fronts for the P3 problem instance.

where intensification was too high in a specific region of the
Pareto front. That is an undesirable situation for the plant
managers who should be provided with all the configurations
of their contextual interest in the objective space.

To solve this problem, in this contribution we showed
a better intensification-diversification trade-off could be
achieved by introducing different filling thresholds associated
to the ants that build the solution in order to provide a
different search behaviour to the different ants in the colony.

Ten well-known problem instances of the literature were
selected to test our proposal. From the obtained results we
have found out that the best yield to globally solve the
problem belongs to the new MACS-TSALBP-1/3 algorithm
using the multi-colony scheme with q0 = 0.2.

In the future we aim to consider other MOACO algorithms
and apply a local search to increase the current performance.
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