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Abstract 
Sequencing units on a production or assembly line in order to attenuate the 
variations in the rates of resource consumption is a problem that has received 
growing attention in recent years. The present study features an analysis of the PRV 
(Product Rate Variation) problem with quadratic discrepancy function. Taking 
advantage of the properties satisfied by any optimum sequence, efficiency of several 
heuristic procedures is increased. Although an efficient exact method exists, these 
heuristics have a potential utility in developing procedures adapted to the industry. 
The results of a short computational experience are included. 

1. Introduction 

In mixed assembly production lines, all the units vary affecting the consumption of resources. 
How to place the units in sequence, to diminish the variations in the rates of resource consumption 
is a problem that has received attention since 1983, as it is related to JIT. In [10] a description of 
the state of the art is presented, in which these sequencing problems are classified in two 
categories: PRV (Product Rate Variation) and ORV (Output Rate Variation). 

In the PRV problem the objective is to minimise the rate variation. The problem was presented 
by [12] and studied by [3], [4], [6], [7], [9] and [11] among others. This study focuses on the PRV 
problem with quadratic discrepancy function. We provide a computational experience based on the 
studied heuristic algorithms. 

2. The PRV problem  

The traditional formulation of the PRV problem is the following: units of P different products 
have to be sequenced in a production or assembly line; the number of units of the product i to be 
sequenced is ui (1≤i≤P). The total units to be sequenced are T. The positions in the sequence will 
be indicated by the index t (1≤t≤T) on account of the implicit supposition that all the units flow at 
a constant and identical speed in the line. The ideal or mean rate of the product i in the sequence is 
ri = ui/T (1≤i≤P). To define the position of the units in a sequence, values xi,t (1≤i≤P; 1≤t≤T) 
correspond to the number of units of the product i sequenced between the positions 1 and t (both 
inclusive). For the sake of coherence, xi,0 = 0 (1≤i≤P). For any value t, the ideal number of units 
sequenced for the product i between the positions 1 and t is t.ri, while the real value for a sequence 
is xi,t. It seems useful to measure the non-regularity of the sequence through a distance between 
both sets of values. A quadratic distance is usually used [12]. 

Given a sequence S, the index of non-regularity will be designated as SDQ(S). The term of the 
index corresponding to position t (contribution of position t) is designated as SDQt(S): SDQt(S)  = 
Σ1≤i≤P  ϕ (xi,t − t.ri) = Σ1≤i≤P (xi,t − t.ri)

2. These contributions depend on t and the values xi,t, that is, 
on the number of units sequenced between 1 and t for each product, but not strictly on how these 
units have been sequenced or how the rest will be sequenced. Consequently, if Xt is the (P,1) 
vector whose components are xi,t, it will often be easier to write SDQt(Xt) than SDQt(S).  

In [7] it is demonstrated that if the objective function can be represented as a sum of the 
discrepancy at each value of t, the problem of searching for and optimum sequence can be 



transformed to the search for a minimal path in an associated graph, where the vertices are 
associated to the vectors Xt, where Xt is the (P,1) vector whose components are xi,t.  

In [11] it is demonstrated that if the objective function can be represented as a sum of the 
discrepancy measured through a non-negative, symmetrical and convex function, the problem of 
searching for an optimum sequence can be reduced to an assignment problem. 

3. Heuristics 

The procedures known to solve assignment problems find optimal solution to the problem 
formulated by [12] efficiently. But the industrial environment problem has certain features [8], 
making it different of the theoretical one. Solutions obtained for the theoretic problem may be 
useless in real world. These features lead to use other procedures, that are variations of direct 
heuristic procedures. In these procedures, the sequence or path is built progressively. At each stage 
in the procedure, a new vertex is added to the segment of built sequence, chosen according to 
prefixed criteria; and once the choice is made, it is not reconsidered. This procedure coincides with 
the "goal chasing" proposed by [13] for the ORV problem, which can be solved optimally as 
shown in [1], [2], and heuristic H1 [12] for the PRV.  

Several authors have stated, on the basis of computational experiences, that the behaviour of 
this heuristic is not efficient because of its short-sightedness. One solution is considering the 
contribution of more than one arc in the prolongation of the path from a vertex X at level t. The 2-
step heuristic considers the two following vertices from the last one added to the segment. This 
procedure, more efficient than the previous one, coincides with heuristic H2 proposed by [12].  

In [9] a modification of H2 (denoted as H1.5) is shown. This heuristic is faster than H2 and 
also gives good results. Ding and Cheng assure the procedure is a 2-step heuristic, but the claim is 
denied by computational experience. In fact, the provided demonstration contains a wrong step [3]. 

A three-step heuristic (H3) may lead to better results than H2, but with a greater expenditure. 
We also propose a heuristic called H2.5, which coincides substantially with a 3-step heuristic, 
except the simplified scheme for positions t+2 and t+3, inspired by [9]. Following this criterion, it 
is also possible to develop a H3.5 heuristic. 

4. Rules for constructing optimum prolongations 

The number of considered vertices following a vertex Xt in a heuristic step may be important; 
therefore, it will be useful to add the following rules to reduce this number. The aim of these rules 
is to eliminate those vertices following from Xt that cannot form part of any optimum 
prolongation. There are three main rules (rules 1, 2 and 3), which can be complemented with three 
more (rules 4, 5 and 6) if several products share the same rate. These rules are only stated here, as 
the demonstration was included in [5]. 

Rule 1: If ri > rj and xi,t − xj,t ≤ (ri − rj).(t+1), we can get rid of Xt + Ij in prolongation paths 
from Xt (product j must not be sequenced at position t+1).  
Rule 2: If ri = rj and x i,t − x j,t < 0, we can get rid of Xt + Ij in prolongation paths from Xt. 
Rule 3: If ri < rj , x i,t < ui and xi,t − xj,t < (ri − rj).[t + T - (m + k)(ui - xi,t) + k]/2

 
 , we can get rid 

of Xt + Ij in paths from Xt, being m the number of products with rate higher than ri, k the 
number of products with rate ri, and Ij, a (P,1) vector with j-th component is 1 and the rest is 0. 
Rule 4: If ri = rj , x i,t − xj,t ≤ 0 and i < j we can get rid of Xt + Ij in paths from Xt. 
Rule 5: If ri = rh > rj and x i,t > xh,t , we can get rid of Xt + Ij in prolongation paths from Xt. 
Rule 6. If ri > rj, i belongs to a family with k products which have the value x i,t = a  at t, and a 
− xj,t ≤ (ri − rj).[ t + (1 + k) / 2]) , we can get rid of Xt + Ij in prolongation paths from Xt. 



The behaviour of the above heuristics is notably inefficient when there are families of 
products. As can be observed in the computational experience, filtering generally increases the 
efficiency of the rules. An additional advantage is the reduction in computing time. 

5. Computational Experience 

In the following Tables the summarised results show the behaviour of several heuristics, 
without and with rule filtering. Those heuristics have been applied to five sets of 5000 instances 
each one, with quadratic discrepancy function; each set correspond a one couple of values (T, P) as 
shown in Table 1. For each couple (T, P) 5000 different instances are randomly generated. The 
optimal solutions have been obtained solving their associated assignment problem [11]. 

Table 1: Size of 5.000 instances of each set and computer time per instance to attain optimum solution (sec.) 

Set 1 2 3 4 5 
T/P/Time 500/10/0.22 1000/10/1.52 1500/10/4.58 2000/10/11.08 2500/10/19.90 

Table 2: Left, mean relative deviation (%) and, right, maximum relative deviation (%) 

Heuristic\set 1 2 3 4 5  1 2 3 4 5 
H1 2.62 2.95 2.89 3.06 3.06  13.95 14.60 16.61 22.90 18.33 
H1.5 1.18 1.37 1.25 1.37 1.35  13.95 11.61 9.24 12.94 10.79 
H2 1.44 1.67 1.56 1.68 1.65  13.95 11.61 10.89 12.94 12.06 
H2.5 1.00 1.20 1.03 1.14 1.11  13.95 11.61 9.39 12.94 10.79 
H3 0.97 1.17 1.01 1.12 1.11  13.95 11.61 9.24 12.94 10.79 
H3.5 0.77 0.96 0.80 0.88 0.86  13.95 11.61 8.49 12.94 10.79 
H1+ 2.50 2.89 2.85 3.03 3.03  13.95 14.60 16.61 22.90 18.33 
H1.5+ 1.12 1.34 1.24 1.36 1.34  13.95 11.61 9.24 12.94 10.79 
H2+ 1.42 1.67 1.56 1.67 1.65  13.95 11.61 10.89 12.94 12.06 
H2.5+ 0.97 1.17 1.01 1.12 1.11  13.95 11.61 9.24 12.94 10.79 
H3+ 0.97 1.17 1.01 1.12 1.11  13.95 11.61 9.24 12.94 10.79 
H3.5+ 0.77 0.96 0.80 0.88 0.86  13.95 11.61 8.49 12.94 10.79 

Table 3: Left, rate of optimum solutions (%) and, right, computer time per instance (sec.) 

Heuristic\set 1 2 3 4 5  1 2 3 4 5 
H1 1.66 1.16 0.42 0.38 0.36  0.02 0.04 0.06 0.08 0.10 
H1.5 1.98 1.24 0.44 0.38 0.36  0.03 0.07 0.10 0.14 0.17 
H2 2.26 1.32 0.54 0.42 0.44  0.15 0.30 0.47 0.63 0.78 
H2.5 4.94 1.68 1.10 0.62 0.62  0.29 0.59 0.91 1.21 1.52 
H3 5.70 1.82 1.14 0.64 0.68  1.36 2.84 4.41 5.92 7.45 
H3.5 7.68 2.60 2.12 1.40 1.12  2.70 5.62 8.79 11.79 14.86 
H1+ 1.68 1.16 0.42 0.38 0.36  0.04 0.08 0.13 0.18 0.22 
H1.5+ 2.06 1.26 0.44 0.38 0.36  0.08 0.17 0.26 0.35 0.44 
H2+ 2.30 1.32 0.54 0.42 0.44  0.10 0.21 0.37 0.49 0.62 
H2.5+ 5.70 1.80 1.12 0.64 0.68  0.17 0.34 0.61 0.82 1.04 
H3+ 5.70 1.82 1.14 0.64 0.68  0.23 0.46 0.90 1.20 1.52 
H3.5+ 7.78 2.66 2.18 1.98 1.10  0.35 0.71 1.45 1.93 2.46 

On the left side of Table 2, the mean of the relative deviation of the solutions obtained by each 
heuristic is shown, being the relative deviation of a heuristic solution: (solution value of heuristic – 
optimum value)/ optimum value. On the right side, the maximum of those relative deviation of the 
solutions is shown. On the left side of Table 3 the rate of optimum solutions obtained by each 
heuristic is shown, while on the right side the computational time is shown. 



Heuristics H1, H1.5, H2, H2.5, H3 and H3.5 are the heuristics described in Section 3. 
Heuristics H1+, H1.5+, H2+, H2.5+ H3+ and H3.5+ coincide with the above ones plus the rule 
filtering at all the steps, as proposed in Section 4. 

6. Conclusions 

The graph associated to PRV problem, with convex discrepancy objective function, have some 
properties regarding any optimum path or prolongation. These properties can be completed with 
additional, generally stricter, properties in case of functions with quadratic discrepancy. The 
properties can be used efficiently in constructive heuristic algorithms to determine sequences (or 
paths) close to the optimum solution. Constructive algorithms with filtering of candidates for the 
prolongation of a partial sequence, besides improving the relative deviation of the solutions, run 
faster than without filtering, for significant instance sizes. 
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