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Abstract 
We deal with the Hoist Scheduling Problem, where a hoist carrying products along a 
production line must be scheduled. Products are taken from a bath once finished an 
operation and moved to the following one. There are time windows (a minimum and 
a maximum values) for the time spend at each treatment. The objective is to 
minimise the total production time. Our contribution is the use of bounds on the 
variable to be optimised, the Cycle Time. These bounds are obtained from the graph 
with Bounded Cycle Time. A resolution based on this oriented graph can be justified 
using some properties of dynamic programming. 

1. Introduction 

Some production lines are formed by a set of tanks or baths containing chemical treatments, 
without buffers between them. Due to the chemical nature, processing times must last within 
specific ranges of values, i.e. between a minimum and a maximum duration. So, if any time 
constraint is surpassed, the product will be considered as defective. The objective is to maximise 
the production rate meeting the whole set of constraints. 

Hoists are quite frequent in electroplating and PCB (Printed Circuit Boards) production, to 
move materials between tanks. Scheduling and control of such hoists becomes a key factor to the 
proper work of the system, specially since chemical processes are involved. Control of the hoist 
movements is known as Hoist Scheduling Problem (HSP) [6]. HSP, even in the simplest case with 
one hoist and a kind of product, is NP-complete, as it was proved by Lei and Wang [3].  

The problem to schedule one hoist in a line has the following characteristics: 
• Each task has a specific time window (a maximum duration minus a minimum duration). 
• Hoist moves products between two tanks, carrying at most one at a time. Trip, loading and 

unloading times are considered constant.  
• Each tank has capacity for one product. There are no buffers between two adjacent stations. 

When batch sizes are quite large, the same scheduling remains for a long time, which assumes 
that hoists repeat indefinitely a sequence of movements, known as cyclic sequence.  

Given these constraints, the objective is to determine in which instant products must be taken 
from tanks, trying to maximise production, i.e. the hoist is scheduled to minimise the cycle time 
(CT) for the simplest case, with homogenous products. This work uses bounded values in graphs 
to solve the Cyclic Hoist Scheduling Problem (CHSP) [2]. 

2. A graph G, with Bounded Cycle Time, for the CHSP (Cyclic Hoist Scheduling 
Problem)  

Phillips and Unger [6] presented the first model for CHSP by means of MILP. Shapiro and 
Nuttle [7] adapted it for a branch-and-bound algorithm. According to a hoist movement sequence, 
Mateo, Companys and Bautista [5] defined the problem as follows: 

[MIN] CT      (1) 
s.t. tGto(j) – tGfrom(j) ≥ Gtime(j) + Gcycle(j) · CT j=1, ..., 3m+1 (2) 

ti ≥ 0     i=0, ..., m  (3) 



CT ≥ 0      (4) 
with Gfrom, Gto ∈ {0, 1, ..., m}; Gtime ∈ Ζ (positive or negative); Gcycle ∈ {-1,0,1}. 

Looking at the constraints, Mateo [4] suggests the search for the maximum path in a graph G. 
A vertex v(i) is associated to each variable ti (i=0, ..., m), and an arc e[v(tGfrom),v(tGto)] from vertex 
v(tGfrom) to vertex v(tGto) with value: 

bj(CT) = Gtime(j) + Gcycle(j)· CT   (5) 
is equivalent to the constraint (2). 

Considering two groups of arcs [4], some properties in the graph G can be established: 
P1. The graph G has m+1 vertices: v(0), v(1), ..., v(m). 
P2. The vertices v(0) and v(m) in the graph G receive two incident arcs: a “tank arc” and a “hoist 
arc”, as it can be proved with the list of constraints. 
P3. The other vertices in the graph G, [v(1), ..., v(m-1)], receive three incident arcs: two “tank 
arcs” and a “hoist arc”, as the list of constraints shows. 
P4. The total amount of arcs in the graph G is 3m+1, associated to the 3m+1 constraints in the 
problem.  
P5. Depending on the assigned value to CT, the graph G may have bounded or unbounded paths.  

We say a graph G is coherent with CT=C, what is shown as Coh[CT=C], if a bounded path 
exists for any pair of vertices [v(i), v(j)]. In the graph G, there are 3m-1· 22 subgraphs Gl, each one 
of which is formed by a set of incident arcs on each one of the m+1 vertices in that graph. A lower 
bound and an upper bound for CT can be obtained by means of a selection of arcs in the graph G, 
all of them in a circuit, and one of them, at least, with length depending on CT. 

3. Solving the graph G with Bounded Cycle Time  

3.1. From the graph G to a matrix form 

Let a vector X be composed by a set of components associated to the vertices of the graph G. 
Let be ΦI a transformation from a vector X into another vector Y (with identical properties than X) 
such that X,Y∈ℜm+1, consisting in the application of:  

yi = MAX k(i) { bj,i
k(i) + xj

 k(i) } i =0, ..., m (6) 
with bj,i

k(i)(CT); i,j∈{0,1, ..., m}; k(i)∈{1,2} for i=0,m;  k(i)∈{1,2,3} for i=1,...,m-1.  
Proposition 1 
A transformation ΦI can be associated to any graph G, which is called graph with Bounded 

Cycle Time (graph BCT), because bounds on CT are useful for the convergence. 
Proposition 2 
The transformation ΦI splits ℜm+1 into areas according to the active constraints at each vertex 

i, being 3m-1· 22 the maximum number of areas.  
A reduced transformation ΦI,l corresponds to each area l, and a subgraph Gl can also be 

associated to such area, in which only one arc is incident on each vertex of that subgraph.  
Proposition 3 
In a subgraph Gl there is at least a circuit with k arcs (k≤m+1). 
Considering the above Proposition 3, if X∈ℜm+1 is inside an area l, the reduced transformation 

ΦI,1 is equivalent to a linear system Y = B + A· X, where each row corresponds to the active 
constraint incident to each vertex. 

3.2. Double points in the application ΦΦI,1 

The transformation ΦI,1 has a double point Xº, at least, if Xº=ΦI,1 (Xº) is accomplished.  
Double points indicate the repetition of the values for the m+1 vertices in the subgraph Gl after 

a period CT. Nevertheless, existence of double points depends on values bj,i
k(i).  



Theorem 1 
If a double point Xº exists for ΦI,l, any circuit in the graph Gl has null value.  
Corollary 
If all the circuits in graph Gl have null value, double points exist forΦI,l. 
Therefore, values of CT for coherent graphs lead to null value for any circuit.  

3.3. Determining double points in the application ΦΦI,1 

Let be Xº, X1 such that X1≠≠ Xº, which also accomplish the expression X = B + A· X. Then: 
(X0 -X1) = A· (X0 -X1)    (7) 

If ΦI,l has double point Xº, according to Definition 4, it is convenient to study what happens if 
X1≠X0+k· 1 ∀k, supposing a single circuit, i.e. Y1=ΦI,1(X

1) with Y1≠≠X1. 
Proposition 4 
If X1 is not a double point of ΦI,1, for p great enough, then: 

ΦI,1
p+q(X1) = ΦI,1

p(X1)      (8) 
with q multiple of the number of vertices in the circuit, and in case of several circuits, power of the 
minimum common multiple for the respective amounts of vertices. 

Proposition 5 
In the above conditions, with X1 defined as in Proposition 6 and X2 such that X2=ΦI,1(X

2): 
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Given these propositions, it can be observed that: 
1. If C is the set of vertices in a circuit of value s, then: 
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i ysx  with Y=ΦI,1(X)   (10) 

2. To stabilise recurrence, it can be necessary to normalise the vector Y:  
Y’ = Y – (s/p) ·  1     (11) 

where p is the number of vertices in a circuit. 
3. In the proposed procedure, following the scheme of dynamic programming [1], we are 

interested in g=0 as our double point is W: 
B+A· W = g+W     (12) 

3.4. Oscillation with period p around points in the application ΦΦI,1 

Theorem 2 
If all the circuits in a graph have no positive value, a convergent algorithm ends in a finite 

number of steps, according to ε, giving a vector X with bounded distance to the double point: 
| X – (B+A· X) | < ε [1,1,...,1]T    (13) 

If any circuit has positive value, one must dealt with the convex components one to one. For 
each convex component, another algorithm with g = y0 and yi = yi – g (i =0, ..., m) can be applied. 

Theorem 3 
If the subgraph Gl has a single convex component, or equivalently class, this second algorithm 

ends in a finite number of steps, according to ε. 
Corollary 
If |g| > ε, then the circuit has no null value. 

4. Computational results 

An algorithm, similar to that in [7] and considering this graph, has been applied to 540 
instances of CHSP, with a number of baths ranging from 5 to 10. The instances are classified 
according to two data parameters: the width of time windows and the hoist speed.  



Minimum time spent at bath i, ai, is generated using a uniform distribution from 20 to 80. 
Maximum time spent at bath i, bi, is generated according to the corresponding kind of windows: 
close windows (CW), bi = U[1.2ai, 1.5ai]; half-opened windows (HW), bi = U[1.5ai, 2ai]; and open 
windows (OW), bi = U[2ai, 10ai]. On the other hand, the duration of hoist movements without load 
between consecutive baths is generated with a distribution ei,i+1 = U[5,10]. The hoist can be seen 
as: fast hoist (FH), fi = 1.5ei,i+1; half-fast hoist (HH), fi = 2ei,i+1; and slow hoist (SH), fi = 3ei,i+1. 
Combining a kind of windows with a kind of hoist, there are 9 sets with 60 instances each one (10 
instances per number of baths m, 5≤m≤10).  

Table 1 shows the mean percentage of rejected sequences after the called Test of Unfeasibility, 
i.e. the relation between solved and planned graphs applying the definition for a coherent graph 
G. To search for the optimal schedule, a branch and bound algorithm is used. For each hoist 
sequence or subsequence, an algorithm based on the evaluation of vertices on graph BCT is 
solved. “Rejected sequences” is used for complete sequences and also for subsequences. 

Each file corresponds to the results for instances with that number of baths. The three first 
columns show results according to the time windows; three next columns are referred to the hoist 
speed; and, the last one, is the mean result for the 90 instances with that number of baths. 

 
Table 1. Percentage of rejected sequences after Test of Unfeasibility. 

m CW HW OW FH HH SH all 
5 0.13 0.08 0.09 0.12 0.10 0.08 0.10 
6 0.14 0.11 0.05 0.08 0.12 0.10 0.10 
7 0.14 0.10 0.08 0.10 0.13 0.10 0.11 
8 0.17 0.14 0.10 0.12 0.13 0.17 0.14 
9 0.17 0.15 0.14 0.16 0.14 0.15 0.15 
10 0.19 0.16 0.16 0.16 0.17 0.18 0.17 

 
The results show the number of rejected sequences for hoist movements in the Test of 

Unfeasibility, which varies between 10% and 20% for lines with this number of stations.  
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