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Abstract 

Sequencing units on assembly lines in order to attenuate 
rate variations in resource consumption is a problem that has 
received growing attention in recent years. In this work, we 
deal with a particular case, the CORV (Constrained Output 
Rate Variation) problem, that seems to be better adapted 
than other views to real industry problems, especially in car 
production systems. Once given a general introduction and 
formulation, a procedure is described to obtain the searched 
sequence. 

1 Introduction 

In mixed assembly lines, not all the units are identical. 
All of them are quite similar, but they can vary in several 
aspects that have influence on the resource consumption 
associated to these units (workstation load andor part 
requirements). How to place units in a sequence, with the 
objective to reduce extremely rate variations referred to 
resource consumption, is a problem that has received 
attention for many years and bas been dealt with in the 
literature since 1983, since it was related to JIT concepts. 

A classification for problems of regular sequences in JIT 
systems that divides them in two groups is presented in Ill: 
PRV (Product Rate Variation) and ORV (Output Rate 
Variation). A more detailed classification [2], in order to 
consider other aspects, is the following: 

This double point of view in the table corresponds to the 
following two aspects: 
1) columns consider the object under a certain criterion of 
regularity: products, components or parts (one or several 
levels) or load; 
2) rows show how regularity can be understood: by 
properties or constraints of regularity to be satisfied by 
sequences; by a measure of regularity, or usually non- 
regularity, that indicates if a sequence is more or less regular 
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than others; and finally, by a combination of both aspects (a 
function considering properties). 

Both aspects, specially the latter, lead to specific exact or 
heuristic algorithms to determine the searched sequences. 

In the PRV problem the objective is to minimise the rate 
variation for different products in any segment of a 
sequence, i.e. regularity in manufacturing products. PRV 
was first presented in [3], and then, several works dealing 
with heuristic procedures [3,4,5,6,7,8,9,10] and with exact 
procedures [10,11,12,13] have been proposed among others. 

The problem of regularity in the consumption of 
components was formalised in [I41 and called ORV [ I ] .  
Later, several heuristic procedures [15,16,17,18] and exact 
procedures [16,17] have been proposed in order to solve it. 
We have called it MORV (Multilevel Output Rate 
Variation) when some levels of parts with different weights 
must be considered to evaluate sequences and has been 
treated in [15,16,19], among others. 

Moreover, load balancing is the main objective in the 
LRV (Load Rate Variation) problem, treated in [20,21]. 

The CO (Constrained Output) problem is presented and 
solved with CLP (Constraint Logic Programming) in [221; if 
products are considered instead of parts, the CO problem 
can he reduced to the CP (Constrained Product) problem. 
The extension of these concepts, proposed in [2], leads to 
define CPRV (Constrained Product Rate Variation) and 
CORV (Constrained Output Rate Variation) problems. 

Several meetings with managers of industries in the 
automotive sector lead us to conclude that they assume the 
car sequencing problem closer to a CPRV or CORV 
problem (even CO) than a PRV or ORV problem, most 
frequently found in literature. 

2 The CP and CO problems 

The usual formulation for the CP problem is as follows: 
units of P different products must be sequenced in an 
assembly line, being ui (i=l,Z, ..., P) the number of units of 
product i to be sequenced. The total of units to be sequenced 
is T, i.e. T=&,  ui. 

The positions in the sequence are indicated by the index f 
(e1.2, ...,T) on account of the implicit supposition that units 
flow on the line at a constant speed for all of them. The 
values xi,, (i=1,2 ,.., P; t=o,l,Z,..T), defined to know the 
position of the units in a sequence, correspond to the number 
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of units for product i sequenced between positions 1 and f 
(both inclusive), beingqo= 0 (i=1,2 ,..., P ) .  

Two positive integer values a; and bi, with a sb i ,  are 
associated to each product i. A sequence is considered 
regular if, for any product i, at most ai positions are 
occupied by units of product i in any segment of bi 
consecutive positions. Therefore: xi,,*,-x;,,Gi for i=l,2, ..., P; 
t=O,I,..,T- bi. 

Given a set of values (P; U;. ai, bi; i=1,2 ,..., F'), i.e. an 
instance of the CP problem may have no feasible solution 
(none of the possible sequences satisfies the conditions of 
regularity), one solution or several solutions. In order to 
establish the necessary conditions for the existence of 
feasible solutions, it is convenient to define previously the 
ideal or mean rate of the product i in the sequence: ri 
(i=l,2, . . ,P): ri= ujT. 

To assign the U; units of product i, the following 
expression must be accomplished: 

ai ai ai 
bi T bi 

&--+--( 1---) 

ai 
bi 

whose value tends to: n5- when T i s  increased 

The fulfilment of the previous condition guarantees that 
at most ai units of product i can be allocated in any segment 
of bi consecutive positions in the sequence. But the 
fulfilment of this condition for two products i and h does not 
guarantee that it is possible to place units of both products in 
the sequence satisfying simultaneously the constraints for 
both of them. 

To formulate the CO problem, it is necessary to consider 
that each product i consumes units of the component or 
part j (j=1,2 ,..., 0. Let y,, be the number of units of 
component j consumed by the products sequenced in the 
first f positions, whose value can be calculated through the 
expression: yi,, n,,*;,,, that, expressed in a matrix 
form, is: Y = N .  X 

Two positive integers ai and b, are associated to each 
component j. A sequence is considered regular if, for all 
components j ,  the units assigned to these positions have a 
requirement not higher than ai units in any segment of bi 
consecutive positions. The constraints on the components 
may be expressed in the following way: 

yi,,+b,-yj,,Sai7for j=1,2 ..__. C ; f = O , I . _ . . ,  T -  bi 

The ideal or mean rate of the consumption of component 
j is: 

necessary to establish conditions for the existence of 
feasible solutions. 

In many real circumstances, nIi adopts only the values 0 
or 1 (absence or presence of an option, related to several 
components, i.e. air conditioning plus cables and screws). 
This happens precisely in the kind of problem presented in 
[221, like Example 1. A situation with 100 units to be 
sequenced, that can be found in [16,24,25,26], is presented 
in Figure 1 and below described. 

RR 
12 1 

I 
Figure 1: Instance of the problem CO with 100 units 

to be sequenced. The symbol * supposes to apply 
the special option in a module. 

Example 1 
18 types of products (P=l8), or varieties of a product, 

made from 5 modules or components (C=5) have to be 
sequenced. Each module may adopt two values: 0 
corresponds to the basic option, and I to an special option 
that generates workstation overload, andlor can be related to 
the consumption of certain components. 

The production plan, whose total number is 100 units 
(T=IOO), is defined by the quantity of units for each type of 
product to be sequenced: 

(5,3,7,1,10,2,11,5,4,6,12,1,1,5,9,5,12,1) 

The constraints on special options in the five modules 
considered (or components) are the following ones: 

Option 1: No more than 1 out of 2 units. 
Option 2: No more than 2 out of 3 units. 
Option 3: No more than 1 out of 3 units. 
Option 4: No more than 2 out of 5 units. 
Option 5: No more than 1 out of 5 units. 

The solution proposed in [26], obtained using CLP, 
accomplishes the imposed constraints. That solution is 
shown in Figure 2 .  In Figure 3 ,  there is another solution 
obtained by the procedure described in Section 5. 
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pO1.pO4.pO7.p15.pO3.pl6.pO2.plO.pO8.pl5.pOl.pl3.pO2.pl5.pO8.pO9.pO2.pl7.pO3.pl5.pO6.plO.pO3.pl7.pO5. 
p09.p07.pll.p05.p17.p01.p10.p08.p15.p05.p12.p05.p10.p07.p11.p05.p16.p03.p10.p07.p11.p05.p16.p03.p10. 
p07.pll.p05.p16.p03.p15.p07.p11.p01.p17.p03.p15.p07.p09.p05.p17.p05.p11.p06.p15.p05.p17.p07.p09.p08. 
p15.p07.pll.p01.p17.p08.p17.pl4.p11.p07.p16.p07.p11.p14.p17.p11.p14.p17.p11.p14.p17.p11.p14.p17.p16 

Sequence of u n i t s  ( t y p e  of p r o d u c t s )  

1 2 3 4 5 6 7 8 9 10 
1 0 0 0 0 0 0 0 0 0 0 
t * * * t * t * t * * t * * * * * t * * t * t * * t * * t * * * * t * * * . * *  * * 
* *  t. * *  t t  * *  * *  tt * *  * *  t* * *  t t  * *  * *  * *  * *  tt * *  tt * *  t t  * *  t t  * *  * * *  t * f * * 
* t  * t t  t * t * *  t t * t * t * t  e * * *  * . * * *  
* *  tt t t  t t  t t * * t * *  * *  *t * * * e  .* t t t  * t  * I 

e t * * * * * *  t * * * * * *  

Mapping f o r  t h e  o p t i o n  t rea tment  

I SDQ - 2443.07 1 
Figure 2: Solution for the instance presented in Example 1 solved using CLP 

p15.p07.pll.p06.p10.p08.p15.p15.p02.p12.p05.p17.p05.p18.p02.p09.p14.p04.p14.p15.p07.p11.p01.p17.p03.p17. 
p15.pO6.pll.pO2.p17.pO3.pl6.pO5.pl3.pO5.pl5.pO7.pll.pl4.pO9.pO7.pll.pO7.pl5.pOl.pl7.pO3.pl5.pO7.pll. 
p16.p07.pll.p05.p17.p03.p16.p05.p10.p08.p10.p14.p09.p08.p10.p05.p17.p03.p16.p10.p08.p15.p07.p11.p01. 
p17.p03.p17.p05.p09.p08.p10.pl4.p11.p07.p15.p01.p17.p03.p17.p05.p11.p16.p07.p11.p05.p17.p01.p11.p07 

Sequence of u n i t s  ( t y p e  of p r o d u c t s )  

1 2 3 4 5 6 7 8 9 10 
1 0 0 0 0 0 0 0 0 0 0 

* * * * * * * * * * * .  . * * * * * * * * * * *  * * * * * * * * *  * * * * * * * * * * *  * * * *  
t * * *  * * *  t * * *  I * *  * *t * * * * *  .+ * * *  * *  * * *  t * * *  t * *  * * * *  t * *  * *  * *  

* * *  t . *  t * *  * t * * * *  * * * * *  * +  * * *  t 
+ * A * * * * * *  * *  * *  t * * t t t  * *  t * t * t *  t * t *  * * *  

* *  * * t  * *  * *  * *  

Mapping for the  o p t i o n  t rea tment  
I SDQ = 51.61 I 

Figure 3: Solution for the instance presented in Example 1 solved using the GCh procedure considering constraints 

3 Similarity between CO and ORV problems 

A certain similarity between the CO and ORV problems 
can be easily noticed. In both cases, the proposed objective 
is to make regular the appearance of special options or the 
consumption of components. This fact is revealed if the 
mean rates of consumption Rj u=l,..,C) are compared with 
the ratios fixed by the constraints: 

Option 1: rI = 0.48 ratio 1 = 1/2 = 0.50 
Option 2: r2 = 0.57 ratio 2 = 213 = 0.67 
Option 3: r3 = 0.28 ratio 3 = 1/3 = 0.33 
Option 4: r4 = 0.34 ratio 4 = 215 = 0.40 
Option 5: r5 = 0.17 ratio 5 = 1/5 = 0.20 

Logically, the ratios are not lower than the rates; 
otherwise, a solution satisfying the constraints could not be 
generally feasible. 

The nearness between ratios and rates leads to approach 
Example 1 as a case of ORV problem. To reach a solution, 
two procedures have been used: the heuristic GCh (Goal 
Chasing) [ 141 and BDP (Bounded Dynamic Programming) 
[16,17,24]. GCh is a greedy procedure that builds the 
sequence adding units in order to minimise SDQ. BDP uses 
bounds to reduce the set of possible solutions, under a 
scheme of dynamic programming. The SDQ function, 
referred to components, which has been used as objective 
function, is the following: 
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The sequence from GCh, whose objective function SDQ 
is 52.97, does not satisfy the constraints in six times for 
option 1 (segments: 29-30, 71-72, 79-80, 83-84, 87-88 and 
96-97); once for option 3 (segment 47-49); and once for 
option 5 (segment 93-97). BDP obtains better solutions, but 
without satisfying only the constraint for option 1, to be 
precise in the segments 25-26 and 75-76, reaching SDQ = 
44.49. Looking for a minimum SDQ favours the constraint 
accomplishment, as it was foreseeable. 

4 The CPRV and CORV problems 

The CPRV problem is a natural extension of the CP 
problem. Two positive integers ai and b,, with q<bi are 
associated to each product i .  A sequence is considered 
regular if, for all product i ,  at most ai positions are occupied 
by units of product i, in any segment of bi consecutive 
positions. Moreover, the objective is to minimise the 
product rate variation for each product located in any 
segment of the sequence. 

The CORV problem is a natural extension of the CO 
problem and consists in sequencing T units, from which ui 
are of type or product i ( i=l , . . ,P) ,  being as close as possible 
to regularity. Products ( i= l , . . ,P)  reflect a unitary 
consumption of components (j=1 ,..,C), expressed by the 
relations qi. Moreover, components or options can be 
subjected to constraints of maximum load (aj) in segments 
or subsequences of prefixed length (bj). It can be formalised 
as follows: 

Let: 
N j  = x[=l nj ,a i  , the total demand for componentj. 
rj = N j / T  , the ideal rate of consumption for component j 

(mean rate). 
%,t, the actual production of product i after t units made. 
y J . .f = CL, n j,ixi,r , the actual consumption of component j 
after t units made. 

One pretends an actual consumption for all components j 
(yj$ in any instant t adjusted as good as possible to the 
ideal consumption try As a measure of non-regularity, 
several formulations are possible, among which are the 
following: 

Considering the function SDQ, the whole problem can 
be formulated through a mathematical program: 

XLixi,, = t  ‘ l I t I T  
Xi ,T  = ui l I i l P  

0 I Xi,r - Xi,r - ,  I 1 ; l I i l P  

l l t l T  

XL,n j i  (xi,,+hj - xi,r)s a 1 5 j I c 
0 I t I T  -b j  

integer variables 

The constraints (2) indicate that exactly t units must be 
sequenced after t units; (3) determine that the final 
sequence contains the given number of units for each 
product; (4) impose that productions in consecutive instants 
are coherent; finally, (5) establish the upper bounds for the 
consumption of components (options) in a segment. 

It is remarkable that if P=C and q i = l  (i=j) and qi=0 
(i#j), the CPRV problem can be observed as a particular 
case of the CORV problem; moreover, the PRV problem 
also can be treated as a particular case of ORV problem. On 
the other hand, if constraints (5) are cancelled in the CORV 
problem, then it appears as the ORV problem. In 
conclusion, the resolution of the CORV problem implies 
the resolution of ORV, CO, CPRV, PRV and CP problems. 

5 Resolution of the CORV problem 

5.1 Graph associated to the problem 

In order to represent the problem, an acyclic graph Go 
with T+2 levels can be defined. A vertex at level t (t=l,..,T) 
is characterised by: 
1) a vector of P components X(t) = (xi ,,,... ,xp,,), such that: CV, 
x,,,= t and 0 I x,,, I U, 
2) a subsequence S(t)=(s,,, ,..., s,(,J, with l( t)  units in X(t), 
which represent the units added in the last l ( t )  instants, 
being l ( t )  = min{t,max(b,)}. 

At level 0 there is only a vertex a associated to the 
production X ( 0 )  = (0, ..., 0) and an empty subsequence. The 
level T is constituted by vertices with a exclusive vector 
X(T) = (Ui,..+) and for all the subsequences of 1(T) units 
that can be built according to the production X ( T ) .  Finally, 
at level T+l there is only a vertex o. 

An arc exists between the vertices V,.,[X(t-l) ,  S(t-l)] and 
V,[X(t), S ( t ) ] ,  at levels t-1 and t (z=l,..,T) respectively, if: 
(1) X(t-1) and X(t) satisfy the constraints (4), and 
(2) S(t-1) and S( t )  are compatible subsequences: 

S 1 , F  s2,r-17...9 Sl(r)-l,r = Sl(r),r-l. 
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P arcs emerge from the vertex a (one for each type of 
product) and as many arcs as vertices are at level T pointing 
to vertex o. The number of vertices in GO can be very high 
(about 1.5 for Example 1); nevertheless, many states 
are not reachable, so the graph Go admits a pruning. That 
action consists in eliminating vertices associated to 
subsequences that cannot satisfy the constraints (5 )  and, 
consequently, eliminating all the emergent and incident arcs 
to those vertices. 

Let GI be the graph after the indicated pruning. An 
index of non-regularity can be assigned to each vertex 
V,[X(t), S( t ) ]  (or to all its incident arcs) of GI, as follows: 

In these conditions, if there is no path between the 
vertices 01 and o in GI, the problem has no solution, unless 
a constraint is not satisfied. Otherwise, if there is some path 
between vertices a and W, finding a sequence with 
minimum SDQ is equivalent to find the minimal path from 
the vertex a to the vertex w. A heuristic procedure to solve 
the proposed problem is below presented. 

5.2 GCh dealing with constraints 

How to adapt the GCh (Goal Chasing) procedure of 
TOYOTA [ 141 is next presented. Let a-iit be the total load of 
component j in the segment [t-b,+l,t] with product i in the 
position t ;  if going back any option j has a total load (a-iil> 
higher than the maximum allowed (aj) in the segment of 
length bj, then the product of type i is rejected as candidate 
for the position t (rule-]) .  

At a position t, all the products with pending production 
are yet not satisfying some load constraint, two decisions 
are available: 1) a hole may be left in the t-th position of the 
sequence (omitting constraints of type 2) and go ahead to 
the next position; 2) adding to the sequence under 
construction the type of product with pending production 
that minimises (6). The consideration of rule-] to the Goal 
Chasing procedure leads to the following algorithm. 

Algorithm A1 

0. Initialise: 
t t  1, X i t O  ( 1 Si-); 

1 .  Load computing: 

Let Xi ( 1 l i P )  be the sequenced units for the type of 
product i up to position t- 1 .  For any i such that XicPi 
determine: 

d i  = x:=1 &:=I nj ,h(Xh +6ih  J - f r j  )" 
where: 6, = 1 i f i  = h, 

a,j, = n j j  + z2a n j [ 4  

where: 

6, = 0 i f i  f h 

Vi , j  

t ,  = rnaxb,t - bj + 1) 
[T] is T - th product in the subsequence 

2. Selection of a product to be sequenced: 

Let Il be the set of types of product such that Xi<ui 

and a Sbj. 

- If n=0, leave hole in position t ;  go to 3. 
- If n#0, choose the type of products such that: 
ds = min ( d i }  among the elements, i.e. a unit of type 
s is sequenced in the t-th position. 

rlf 

3. Updating of solutions: 

xs txs+ 1 
If t=T, end; 
else t t t + l  ; go to 1. 

A procedure for backtracking has been added to the 
algorithm if n=0 in step 2. In that case, the previous vertex 
in the path is considered, the unsuccessful path on the graph 
G1 is left, and a new continuation is taken. 

In order to avoid unproductive searching through paths 
that lead to unfeasible solutions, a procedure to reject 
vertices has been included. This rejection takes care of a 
possible incompatibility of the option load for the units not 
yet sequenced, based on an upper bound for allowable load 
in the segment to be completed. Indeed, let u'jf be the total 
load for the option j that will be caused by the T-t+l units 
not yet sequenced when a segment of length t-1 is built; 
i.e.: 

. 

An upper bound can be easily established, obtained from 
the allowable load in the segment [t,U to be completed, 
according to the type of product i candidate for the t-th 
position. The proposed bound, Kvr, is determined as 
follows: 
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if nji  = 0 then 

K ,  = Cobj + rninbj,Ro. y ( n j , , ) ]  

CO = ; R, = ( T - t ).MOD.( a ) 

That sequence satisfies all the constraints and the 
objective function is SDQ = 51.61, while for the sequence 
shown in Figure 2 was 2443.07. Figure 3 shows a better 
distribution for components or options along the sequence 
compared with Figure 2, and reaches a better distribution 
for workloads 

i f n j j  2 1  then 

K ,  = C,bj + rninbj.R, . y ( n , , , ) ]  

C ,  = - ;R, = ( T - t + l ) . M O D . ( a j )  1 a: + J 
Summarising, the rules to eliminate candidates 

implemented in the procedure with backtracking are: 
Rule-1 : If a-ij, >aj, then the type i is rejected as candidate for 
the t-th position in the sequence. 
Rule-2: If a+j, >Kijt, then the type i is rejected as candidate 
for the t-th position in the sequence. 

Finally, if level 0 in the graph is reached during the 
backtracking and there is no choice to explore, the problem 
has no feasible solution. 

6 Aplications 

A soft package in Visual Basic, ROSINA, has been 
developed [25], which includes AI and a procedure based 
on BDP [23]. The sequence shown in Figure 3, obtained 
with A l ,  lasts less than 1 second in a PentiumII 233 MHz. 

Option. 1 
Option.:! 
Option.3 
Option.4 

Prod. plan 24 32 24 16 

Option. 1 : No more than 1 out of 4 units 
Option.2: No more than 1 out of 2 units 
Option.3: No more than 1 out of 4 units 
Option.4: No more than 1 out of 3 units 

Figure 4: Instance presented as Example 2 

The backtracking procedure in AI is not necessary for 
Example 1; nevertheless, it is different with other instances, 
like Example 2, which corresponds to a CPRV problem, 
T=96, P=4, n,,=l (i=j) and n,,i=O (i#j), with the scheme 
presented in Figure 4. 

In spite of the simplicity of Example 2, A1 reaches the 
stage 95 (with a pending unit of p03) and backtracking is 
necessary to obtain the solution presented in Figure 5. 

pO2.PO1.pO3.pO4.pO2.pOl.pO3.pO2.pO4.pOl.pO3.pO2.pO4.pOl.pO2.pO3.pO2.pOl.pO2.pO3.pO4.pOl.pO2.pO3.pO2. 
p01.~04.p03.p02.p01.p02.p03.p04.p01.p02.p03.p02.p01.p04.p03.p02.p01.p02.p03.p04.p01.p02.p03.p02.p01. 
p04.~03.p02.p01.p02.p03.~04.p01.p02.p03.p02.p01.p04.p03.p02.p01.p02.p03.p04.p01.p02.p03.p02.p01.p04. 
p03.p02.p01.p02.p03.p04.p01.p02.p03.p02.p01.p04.p03.p02.p01.p02.p03.p04.p01.p02.p03. 

Sequence of units ( t y p e  of p r o d u c t s )  

1 2 3 4 5 6 7 8 9 9  
0 6  1 0 0 0 0 0 0 0 0 

t * * t * * * * * * * t * * t * t * * * * * * *  

* * * * * t *  * *  * *  * *  * *  * *  * *  * *  * *  * *  * *  * *  * *  * 

I 
* * *  * f * * * * t * * * t * * * * * * * * * *  

* *  * * * * 

Mapping for t h e  o p t i o n  t rea tment  
I SDQ = 50.4 I 

Figure 5:  Solution for Example 2 obtained with the GCh procedure dealing with constraints. 

7 Conclusions 
length. This way to tackle the problem is closer to 
problems that managers face up in car factories. They 
assume their problem closer to a CPRV o CORV problem 
(even CO) than a PRV o ORV problem. 

The constraints considered can reflect different kinds of 
limitations: physical (impossible to place in a workstation 

This work presents a kind of problem found sequencing 
mixed units in assembly lines in which consumption or use 
of resources to elaborate the final products are subjected to 
a set of constraints. Each constraint fixes the maximal load 
for an option in any segment or subsequence of a given 
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more than a certain number of identical units), operational 
(impossible to d o  certain tasks in a higher frequency 
allowed by the production system), etc. Nevertheless, they 
can be also useful for sequences with a set of desirable 
properties in JIT context, such that regularity in 
consumption of resources or in producing types or 
varieties of a product. 

The use of an objective function and the load 
constraints as a whole permits a characterisation, both 
quantitative and qualitative, for regularity. Moreover, it 
represents a kind of problem (CORV), which combines 
balancing in consumption or use of resources respect to an 
ideal prefixed rate with compatibility for loads. 

W e  have proposed a heuristic algorithm to solve the 
CORV problem, which is also valid to  solve the ORV, CO, 
CPRV, PRV and CP problems. We have used a criterion 
based on the quadratic distance between real and ideal 
levels of consumption in production (SDQ); nevertheless, 
all the procedures used can be adapted to  other kinds of 
criteria, as those based on Euclidean (SDE) and 
rectangular distance (SDR), among others. 
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