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Abstract 
Heuristic procedures based on priority rules are quite 
frequently used to solve the multiple resource-constrained 
project-scheduling problem (RCPSP), i.e. task 
programming with limited resources. The rules are based 
on the problem knowledge. Different local search 
procedures have been proposed in order to look for 
acceptable solutions in scheduling problems. In this work, 
local search procedures, that define the solution 
neighborhood based on greedy heuristics, are proposed to 
assign assembly operations to a fixed number of robots in a 
manufacturing cell. A genetic algorithm is used to generate 
the solution. 

1 Introduction 
The multiple resource-constrained project scheduling 
problem (RCPSP) has been extensively treated in the 
literature (e.g. [ 1][2][3]). Exact solutions have been 
obtained using branch-and-bound procedures as well as 
dynamic programming [4] [SI. Nevertheless, these 
procedures are only useful for low dimension problems 
due to its NP-hard complexity [6]. 

In order to solve realistic problems, different heuristics 
have been used like, for instance, those based on priority 
rules constraining the serial or parallel dispatching of tasks 
[7][8]. The rules consider different aspects like, for 
instance, processing times (activity duration), slacks, 
number of subsequent tasks, resource requirements, 
randomizing, etc. The rules are applied step by step to 
choose a task among a set of them whose precedents have 
already been scheduled, while taking care that the resource 
requirements fit the available resources. Usually, each 
heuristic of this type has been associated to only one rule 
that determines the task to be dispatched at each situation 
(unless random selection is used). 

These heuristics often produce acceptable solutions, and, 
as average, the higher the number of aspects considered in 
a rule the better the solution is. Nevertheless, it cannot be 
concluded that there exists one rule that works better than 
This work was partially supported by the CICYT Projects TAP 96-0868, 
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any other for any instance of the problem. Moreover, 
unless a random selection of tasks is incorporated, the 
rules will always produce the same solutions. 
Another type of heuristics is, based on local search [9] like, 
for instance, Hill Climbing (HC), Simulated Annealing 
(SA), Tabu Search (TS) and Genetic Algorithms (GA). 
The CA, introduced by Holland in 1975 [lo], can be 
applied to the optimization of several combinatory 
problems [ll] and, in particular, to the scheduling 
problems to analyze the behavior of different heuristics 
[ 12][ 131 as well as to solve the problem itself [ 14][ 151. 
This second type of heuristics provides alternative ways to 
look for solutions in a defined neighborhood. Nevertheless, 
the particular knowledge of any scheduling problem is not 
considered if the neighborhood is defined in a general way. 
This does not happen with greedy heuristics. 
In this work, a local search procedure is proposed 
including the positive aspects of both types of heuristics: 
1) the knowledge about the RCPSP offered by the priority 
rules of the problem and, 2) the possibility of generate 
solutions in the search space. For this purpose, the 
solutions are characterized by sequences of priority rules. 
Each sequence of rules generates one or more solutions 
following a simple algorithm that optimize the makespan 
(total time needed for the real execution of the task). A 
Genetic Algorithm is applied to generate the solutions 
using crossovers, mutations and regeneration of different 
priority-rules sequences. 

2 Local Search Heuristics 
Local search methods (TS, SA, CA, etc) are used to 
explore a solution neighborhood. A typical way to define a 
neighborhood in a scheduling problem is the interchange 
of tasks. This is a general procedure that does not use the 
specific information about the problem. 
Other approaches to the definition of a neighborhood use 
the relation between a heuristic h and the solution s 
obtained applying h to a problem p ,  i.e. h(p) = s [ 161. This 
relation allows the determination of neighborhoods in both 
the problem space and the heuristics space. 

0-7803-5704-3/99/$10.00O1999 IEEE 41 1 



In order to obtain a neighbor in the problem space the 
following actions are done: 1) introduce a random 
perturbation (within some range) in the data of the problem 
(e.g. change in a 10% the duration of the assembly time of 
each part), 2) one particular heuristic is applied to the new 
data to obtain a “dummy” solution (i.e. a dummy sequence 
to assembly all the parts), 3) the “dummy” solution is 
evaluated (i.e. the makespan is computed) with the original 
data of the problem. 

The definition of neighborhoods in the heuristics space is 
done by developing parameterized variations of the set of 
specific heuristics of the problem. This can be done in at 
least two ways in the RCPSP: 

Defining a new hybrid rule p as a linear combination of 
the original dispatching rules pi, i.e. p=&i ?q pi. 
Dividing the dispatching into ordered subsets of rules 
(e.g. the three first tasks will be dispatched by rule #2, 
the next two tasks by rule #7, etc). An extreme case of 
this approach is that each decision in the dispatching is 
characterized by one particular rule, i.e. for a problem 
with N tasks the dispatching is controlled by the vector 
r = (prll, ...,&I, ..., prm), where p[k] is the rule applied in 
the decision k (note that the rule.pKm is irrelevant, but 
we include for homogeneity). 

3 Assembly example 
Figure 1 shows a set of 12 parts to be assembled on the 
base A by two robots of the same type (the parts Ci, Gi and 
Di i~ (1,2} act as fasteners). Table 1 summarizes the time 
(in seconds) needed for the assembly of each part and the 
precedence relations between them. 

V 

c1 G1 G2 cz 
Figure 1 : Assembly to be performed using two robots. 

A first attempt to determine the assignment of tasks to each 
robot was done using a procedure based on the parallel 
dispatching of 100 well known rules. The set of rules, 
listed in Appendix A, includes, for instance, SI0 (Shortest 
Imminent Operation), GRD (Greatest Resource Demand), 
Weighted Resource Utilization Ratio and Precedence 
(WRUP), Minimum Job Slack (MINSLK), among others. 

The best solution without any subsequent local 
optimization has a makespan of 62 seconds, obtained with 
vectors uniquely composed by any of the rules: 4-13, 27, 

51-59, 61-70, 83, 89,91,92,96 and 100. The use of other 
rules produces solutions between 63 and 71 seconds (the 
worst case for rule #97, i.e. prkl = rule-#97 Vk). 
Nevertheless, in this example it is easy to find an optimal 
solution, like any of those in Figure 2. This simple 
example does not show that the rules are inadequate but 
that the way they are applied is not optimal. 

D1 
El 8 

17 I B2 
D2 I 14 c 2  

Table 1 

Solution 1 
0 15 23 30 40 54 60 

Rob.1 

Rob. 2 

0 10 16 23 40 51 60 

Solution 2 
n IS 32 A n  

51 60 0 10 16 23 33 40 
Figure 2: Two optimal solutions (makespan=60s) for the 

assembly problem of Figure 1 showing the task assigned to each 
robot and the total time after each assembly operation. 

4 Basic Dispatching Algorithm 
Given a vector of rules r = (p[ll, ..., p[k], ..., pcm), the task 
scheduling solution is directly obtained using the algorithm 
AI described below. 

Nomenclature: 

number of tasks (components to be assembled). 
number of resource types (robots, pallets, etc). 
task index, lli5N. 
resource index, 15j;ilM. 
scheduling decision index, 1lkSN. 
dispatching time. 
duration of task i. 
ending time of task i. 
set of precedence tasks of task i. 
number of units of resource j required by task i. 
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number of available units of resource j (initialized 
as ROO') ). 
set of tasks to be scheduled (initialized as Xo). 
set of tasks satisfying the precedence constraints 
( Y W  
set of tasks satisfying the precedence constraints 
and resources availability (ZsY). 
first task of 2 
set of tasks being executed. 
set of tasks being executed with closer ending time. 
rule of the scheduling decision k in vector of rules r. 
maximum ending time of the scheduled tasks. 
time needed to solve all the tasks (makespan). 

Begin A1 
1 .  

2. 

3. 

4. 

5 .  

6.  

7. 

Initialize: 
T c O  
k t l  
C(i) t o o  Vi (1liW) 
R(j)tRo(j) Vj ( 1 SjSM) 
XtXO 
w c 0  

Create K 

Create 2 
Y = i Y E x  : ( C ( ~ ) S T  vXE rot) ) v rcy)=0 1. 

z ={ZE Y : R(z,j)j)lRO') V j }  
IF Z=0 GO TO 6 

Arrange 2 according to rule p ckl 

R ( j ) t  R(j)-R(z J) Vj 

Schedule the task: 

c(z*)=T+P(z*) * 

wt W+{ z*} 

Y+Y-{ Z * }  

xtx-{ z*} 

C = max[C(w)] with WE W 

IF X=O GO TO 7 

k t k + l  
GO TO 3 

Search S={ s : C(S) = min[C(w)] with WE W } 
RO')+RO') + ~ E s  W s j )  Vj 
T t T +  C(s) with SE S 
wcw-s 
GO TO 2 

C,, = max[C(w)] with WE W 

Increment the decision pointer: 

Release of resources: 

Determine Cma: 

End A1 

The application of the algorithm A1 to the assembly 
example previously described in Section 3 with the vector 
of rules r = (40,40, 7, 7, 7,40,40,40,40,40,40,40) gives the 
solution 1 shown in Figure 2. It is interesting to remark 

that using rules #7 and #40 independently the obtained 
solutions last 62 and 63 seconds respectively. 

In general, given a vector of rules r and an algorithm A it is 
possible to define a heuristic h from the pair (r, A), i.e. h = 

The algorithm A1 can be used for any local search 
procedure that allows the generation of neighbor solutions 
in the heuristics space. Then, the rules are altered instead 
of the tasks. 

h(r, A). 

5 The Genetic Algorithm 
The generation of solutions in the heuristics space (i.e. 
vectors r = (pill, ...,PILI, ..., PIN) to be used by AI) ,  was 
done using the genetic algorithm GA1 described below. 

Nomenclature: 

number of individuals (vectors of rules) in the 
population. 
number of iterations (generations). 
instance of the problem to be solved. 
population of ancestors of the sequences of rules. 
population of ancestors of the heuristics. 
population of ancestors of the solutions. 
population of descendants of the sequences of rules. 
population of descendants of the heuristics. 
population of descendants of the solutions. 
population of mutated descendants of the sequences 
of rules. 
population of mutated descendants of the heuristics. 
population of mutated descendants of the solutions. 
population of eligible sequences of rules for the next 
iteration (generation). 
element i of the sets nr , A, , A, and Q,. 
element i of the sets n h  , Ah , Ah and a h .  

element i of the sets IIv , As , As and 

Begin GA1 
Phase A: Initialization 
0. Generation of initial populations: 

0.1 Generate the initial nr of I as: 

0.2 Generate the initial population of heuristics: 

0.3 Generate the population of solutions of p and 

n r = {  ri = ( P I I I ~ * * *  P IN) : P[II= ...= P [NI} 

l l h  = { hi = hi(ri,Al) : ri E II,} 

evaluate their makespan: 
n,= { Si = hi@) : hi E n h }  

0.4 Save as heuristic and incumbent solution the pair 
(h*,s*) with the best makespan. 

0.5 Determine the fitnessA of the elements of lIy as: 
( D j  -oil,,+")-' 

f . =  ' E;=, (Oi - d," 1-l 
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with: 
Di 
D,, 
Dmin 
a 

makespan of the solution i 
greatest makespan of the population 
lowest makespan of the population 
index of the population homogeneity 

Phase B: Iterate through the following steps L times: 

1. Selection of ancestors: 
Build 112 pairs of elements of ll, according to the 
fitness of the elements of ll,. 
Choice of the pairs for the crossover: 
2.1 Determine the probability of the current 

crossover: P,  = P,(a).  
2.2 Assign a random number to each pair of 

sequences of rules. 
2.3 Decide, for each pair of sequences of rules, if a 

crossover should be done according to their 
random number and P,. 

3.1 Crossover the selected pair of sequences of rules 
to generate two descendants, creating A,. 

3.2 Generate Ah and A,, from A, as it was done in 
0.2 and 0.3 respectively. 

3.3 Determine the makespan of the elements of A,r If 
any element of As has a better makespan than 
the incumbent solution, then save as heuristic 
and incumbent solution the pair (h*,s*) 
associated to that element. 

2. 

3. Generation of descendants: 

4. Mutation of descendants: 
4.1 

4.2 
4.3 

4.4 
4.5 

4.6 

Determine the probability of mutation of the 
current generation: P ,  = P,(a). 
Assign a random number to each element A,. 
Decide the elements of A, to be mutated 
according to their random number and P,. 
Mutate the chosen elements of A, creating A,. 
Generate Ah and A, from A, as it was done in 
0.2 and 0.3 respectively. 
Determine the makespan of the elements of A,. 
If any element of As has a better makespan than 
the incumbent solution, then save as heuristic 
and incumbent solution the pair (h*,s*) 
associated to that element. 

6 Experimental Results 
In order to validate the proposed approach, 270 different 
instances of the task sequencing problem have been solved 
considering: 

Number of tasks: 6 c N c 15. 
Types of resources (robots, pallets, etc): 1 S M S 3. 
Units of resourcej (e.g. number of robots) 2 5 R,(i) I 5. 
Duration of task i: 1 I P(i )  S 16. 
6 different ratios #precedence/N. 

The proposed GA1 has obtained the optimum solutions of 
the 270 instances of the problem in less than 12 minutes 
using a Pentium I1 233MHz. 

The following subsections detail some particular aspects of 
the implemented algorithm. 

6.1 Initial Population 

A population with size I =lo0 was used with the aim of 
considering all the heuristics derived from the rules shown 
in Appendix A. Then, the initial population is composed of 
100 vectors of rules, each one composed by one particular 
rule in all its components. 

This allows the exploration of all the solutions generated 
by the greedy heuristics. In order to increase the size of the 
initial population it is only necessary to include new rules 
or generate hybrid rules using linear combinations of 
previous rules. 

The random selection of the task to be dispatched has also 
been incorporated as a rule (rule 26), to allow the 
generation of any solution. The rule including random 
selection is necessary when the set of rules does not 
guarantee the generation of all the solution space. 

6.2 Selection Process 

The elements of ll, are randomly selected with larger 
probabilities for those elements with better fitness. 

6.3 Probabilities of Crossover and Mutation 

The probability of any crossover or mutation, P ,  and P ,  
respectively, depends on the homogeneity index a of the 
current population. In this way, a population with quite 
similar individuals will be modified through mutations 
because the crossovers would not be effective for 

5. Regeneration of the population: diversification. The following values have been used for 
the experiments: P ,  =1-0.5a, and P ,  = 0.05+0.95a. 5.1 Build the population of eligible elements 

!2,+ ll,+ A, + A, 
5.2 Determine the fitness of the elements of the 6.4 Crossover Process 

Given two vectors of rules (the ancestors) two components 
are randomly selected, and the rules between these 
components in both of them are interchanged to obtain two 

populations As and As as it was indicated in 0.5. 

fitness of the elements of n, , As and A,. 
5*3 Choose Or according to the 

End GA1 
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new vectors of rules (the descendants). Figure 3 illustrates 
a crossover. 

Ancestors Descendants 

Figure 3: Example of a crossover. 

6.5 Mutation Process 

Three different types of mutation of a vector of rules have 
been considered: soft, medium and hard. The probability 
of each type of mutation is given a priori. 

Sofr mutation: two components of the vector of rules are 
randomly selected and interchanged. 

Medium mutation: one rule of the vector is randomly 
selected, this rule is successively replaced by all the 
available rules and the combination that generates the 
lowest makespan is selected. 

Hard mutation: it is equivalent to test all the possible soft 
mutations of the vector of rules and select the one with the 
lowest makespan. 

6.6 Regeneration Process 

The elements of Cl, are randomly selected giving higher 
priority to those sequences of rules with better fitness. 

6.7 Frequency of the Rules 
The frequency of the 100 rules in the 270 optimum 
solutions was also determined (Figure 4). The initial 
frequency of each rule is I%, but the results show that, 
after the evolutionary process, some rules appear with 
higher frequency; in particular, it is interesting to note the 
6% of rule 26 (random selection of a task). 

7 1  

Figure 4: Final frequency of the 100 rules in the experiments. 

7 Conclusions 
A method to look for solutions of the RCPSP with 
application to the scheduling of assembly operations with 
limited resources (the robots) has been presented. The 
main contribution of the method is the incorporation of the 
knowledge provided by the specific heuristics of the 
problem in a local search procedure. In this way, the 
solution is characterized by a sequence of priority rules. 
The method has been implemented using a genetic 
algorithm. The experiments and computational experiences 
were quite satisfactory. 

Appendix A: List of Rules 
Nomenclature: 

P(i) 
RW) 
ROO’) 
Z 

ns( i) 
nst(i) 
i+h 
i a h  
EST 
LST 
EFT 
LFT 

duration of task i. 
number of units of resource j required by task i .  
number of available units of resource j 
set of tasks satisfying the precedence constraints 
and resources availability. 
number of direct successors 
number of successors 
h is a direct successor of i. 
h is a successor of i. 
Earliest Start Time. 
Latest Start Time. 
Earliest Finish Time. 
Latest Finish Time. 

Schedule the task z* : v(z*)=maxi,~[v(i)] 

NAME RULE: 

1 .  SI0 Shortest 
Imminent Operation. v l ( i )  = -p(i) 

2. GRD Greatest M 
v2(i)  = P ( i ) x R ( i ,  j )  

vs(i)  = p(i) Cp(h) 

Resource Demcmd. j s l  

3. GRPW Greutest Rank 
Positional Weight. i*h 

R(i, j )  Vq(i) = wpU( i )  + W r c -  
j=, &W 

4-14*. WRUP Weighted M 

Resource Utilization 
Ratio and Precedence. 

26. ALEA. vs(i) = Rundom(i) 

27. MTS Most Total 
Successors v7(i) = 

vs(i)  = w,P(i) + w, x- R( i , j )  
j = l  & ( j )  

28-38*. WRUP3 

39-49*. WRUP4 v&)=wpP(i)+v5(i)= w p  i-tk z P ( h ) + v , ( i )  

R(i, j )  vl,(i) = wpn.st(i) + w, x- 50-60*. WRUPS 
j = l  
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R(i, j )  
vll(i) = wp C P(h) + wr C-  61-71*. WRUP6 

i=+h j=1 % ( j )  
v,,(i)= w,P( i )+v , , ( i )=  wp c P ( h ) + v , ( i )  

v13(i) = ns(i) 

v , , ( i )=ns( i )+  c P ( h )  

i s h  72-82*. WRUP7 

83. MlT Most Immediate 
Successors 

84. MIT2 

85. MIT3 vI5(i) = ns(i)P(i)  

86. MIT4 

i+h 

v16(i) = ns(i) P(i )  + P(h) 

q7(i)  = ns(i) + P(i )  C R ( i ,  j )  

[ i+h ) 
M 

j = l  
87. MIT5 

88. MIT6 v,8(i) = n s ( i ) P ( i ) x R ( i ,  j )  

89. M1T7 

M 

j=l 

v,,(i)=nst(i)+ c P ( h )  
i s h  

90. MIT8 vzo(i) = nst(i)P(i)  

v,,(i)=nst(i) P ( i ) +  C P ( h )  

~ ~ ~ ( i )  = nst(i)+ P( i )C  R(i, j )  

vZ3(i) = n s t ( i ) P ( i ) z R ( i ,  j )  

vz4(i) = 

q,(i) = -EST(i) 

v26( i )  = -LFT(j) 

~ 2 7 ( i )  = -EFT(i)  

( i s h  ) 
M 

j = I  

91. MIT9 

92. MlTlO 

M 

j = 1  
93. MlTl1 

94. LST Latest Srurt 
Time 
95. EST Eurliest Start 
Time 
96. L R  Latest Finish 
Time 
97. EFT Eurliest Finish 
Time 

Slack 
99. RSM Resource 

98’ MwSLK Minum v28(i) = -(LST(i) - EsT(i))  

Scheduling Method v d i )  = 

vgO(i) =- ~mau[O,(EFT(i ) -LST(h)) ]  
k ~ - { i )  100. RSM2 

*A different rule is considered for each value of w, such 
that W , E  {O,O.l, ..., 0.9,1}, w, =1- w,. 
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