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LEVEL SCHEDULES FOR MIXED-MODEL
ASSEMBLY LINE AND THE
APPORTIONMENT PROBLEM

JOAQUIN BAUTISTA, RAMON COMPANYS and ALBERT COROMINAS
Dept. of Business Administration/ETSEIB,
Universitat Politécnica de Catalunya.

From the observation of the coincidence between a heuristic procedure
proposed by Miltenburg for obtaining sequences in a JIT context and a
procedure for assigning seats in a house of representatives, we study the
connections between the sequencing problem and the apportionment problem,
which allows us to consider the approach to the former and to propose several
procedures for solving it.

(PRODUCTION/SCHEDULING_LINE BALANCING;
INVENTORY/PRODUCTION JUST-IN-TIME; APPORTIONMENT
PROBLEM)

1.- Introduction

Just-in-time (JIT) production systems often use mixed-model assembly lines. One of
the problems that arise is the determination of the sequence of the units so that the
consumption of parts is as constant as possible. Monden (1983) discusses the problem and
explains how it was dealt with at Toyota. This question has been addressed by many authors.

In particular, Miltenburg and Sinnamon (1989) consider the multi-level case, and
Miltenburg (1989) proposes a framework for scheduling JIT single-level production systems
and develops a model and several resolution procedures for the case in which the objective
is to schedule a constant rate for each product (this may be an objective in itself or a
consequence of the objective of regularizing the consumption of parts, either because the
Jatter are different for all products or, as Miltenburg points out, when the products require
approximately the same number and mix of parts - specifically, when the compositions of
each product have a common subset and each product also consists of an additional unit of
a different part for each product).

An important part of the Miltenburg’s work in his 1989 paper consists in finding -
given a vector R (such that Z;=1) and a positive integer h - an integer vector A(h), with
components g, such that T, = h and which is at minimum quadratic distance from the
vector Q = hR. Miltenburg explains and justifies at length the algorithm which makes it
possible to obtain A(h), given A and R.

Bautista, Companys and Corominas (1991) have observed that this problem is a
particular case of the apportionment problem, which consists in determining an integer
vector, with the sum of its components equal to %, that is as near as possible to a vector of




generally non-integer components (quotas) which result from sharing out / proportionally
between different options. This problem arises in many real circumstances, and in particular
in political processes, such as the distribution of the total number of seats of a house of
representatives among different constituencies or the assignment of seats to the political
parties contesting an election, when it is desired that the distribution should be as
proportional as possible (e.g. the number of seats proportional to the population of the
constituency or to the number of votes obtained by the party, according to the case). The
authors have also noted that the procedure used by Miltenburg in his articles coincides with
that proposed initially by Alexander Hamilton in 1792 - see Balinski and Young (1982) -,
which is known by several different names, and consists in assigning to each option the
integer part of the quota and the rest of the seats successively according to the decreasing
order of the fractional part of the quotas.

These observations, which are possibly rather obvious, and the comments of the
referees on a first draft of these ideas has encouraged us to make a more thorough study of
the relations between the Miltenburg problem and the apportionment problem.

This paper is organized as follows. The problem to be solved is described in §2. The
apportionment problem and the procedures for resolving it are laid out in §3. In §4 we
propose different procedures for resolving the Miltenburg problem arising from the study of
the apportionment problem and we also describe exact procedures based on BDP - Bounded
Dynamic Programming, presented in Bautista, Companys, Corominas (1992) - . The results
of applying these procedures to a large set of instances of the problem are summarized and
discussed in §5. Finally, §6 includes the synthesis and conclusions.

2.-The problem of determining balanced sequences

We summarize the presentation of Miltenburg (1989), adapting the notation to
facilitate the comparison of the sequencing and apportionment problems:

On an assembly line we must produce p; (i = 1,...,n) units each of n products (i.e.
a total of P = =, p; units); each unit requires a cycle, whose duration may be considered as
the unit of time, so the production of the P units requires exactly P units of time, which we
will also call T. In each unit of time we obtain a unit of product, and we want the number
of units of each article i obtained up to the instant % (a,, non-negative integer; i = 1,...,n;
h =1,...,T) to be as similar as possible to g, = hp/P (or g, = hr,, with r, average rate
of production of product i, equal to p/P). Obviously, it is not possible for condition a; =
gw Vi,h to be fulfilled, which leads us to seek the vector of non-negative integer parts a
which is most similar to the vector of parts g,; of course, we must define what we
understand by the most similar, and the form of specifying this aspect leads to different
objective functions, such as the four proposed by Miltenburg in the work quoted above:
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Obviously, the minimization of expressions (1) and (2) is equivalent, and the same
may happen with the pair (3) and (4), though the equivalence is not necessarily maintained
when we add the expression for the different values of 4. The overall objective is to find a
sequence that minimizes the sum of some of these expressions from & = 1 to T; a procedure
for trying to achieve this is to minimize the corresponding expression of each value of A: the
sequence of vectors with components @, non-negative integers of sum A, obtained thus is
optimum if feasible, that is if:

aihS ai'h.H S (Zih + ]. i = 1,...,”; h = 1,...,T"1

Miltenburg focusses on the minimization of (2). To do this it is sufficient to assign
to each type of product the integer part of the value of hr, and the remaining units
successively in decreasing order of the fractional part of these expressions, as proposed by
Miltenburg, which coincides with Hamilton’s procedure for assigning the seats of a chamber
of representatives to a set of states according to their population. The procedure is also valid
for minimizing function (4), and any expression of the form:
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but it does not guarantee that the feasibility conditions expressed above are verified, i. e. for
some given r, it is not always true that @, < @, and therefore it may occur that @, > G
which means that as the number of seats to be distributed increases, the number of seats




attributed to an option decreases. This affected the states of Alabama, Colorado and Maine
in a certain distribution of seats, and came to be known as the Alabama paradox.

In some cases, then, the procedure allows us to find the optimum very easily and in
others it does not even allow us to find a feasible solution (though it always provides a lower
bound of the optimum value); Miltenburg proposes procedures for overcoming this pitfall
when it arises. -

In fact, the choice of one function or another to measure the discrepancy between one
sequence and the ideal sequence may often be somewhat arbitrary. Also, the approach to the
problem through the discrepancy function is only one of the possible ones (we can also ask
what is the point in speaking of regularity when we only have to sequence a unit of a certain
type of product); it is reasonable too make the solution verify certain properties and seek a
procedure to ensure this or consider as a reference the instant in which we wish to have a
unit of product instead of the desired production at each instant, and try to get close to these
ideal instants.

The problem that consists in finding - given a vector of non-negative components with
an integer”sum - a vector of integer parts whose sum is equal to that of the given vector is
a classical problem called the apportionment problem. There is a great deal of literature on
this subject that shows that the major difficulty with this problem is that of finding a suitable
approach to it, rather than resolving it once the criteria of assessing the solutions have been
chosen. In the existing sequencing problem, however, there is a differential aspect: advances
and delays with respect to the ideal dates involve costs, and it is reasonable to consider their
minimization as an objective.

3.- The apportionment problem

The apportionment problem appears in very diverse contexts, but has been studied
mainly with regard to the assignment of seats in a chamber of representatives of a given size,
T, between the elements of a certain set of states in proportion to their population. Although
it is simple to state, the problem brings up very complex questions; there is insufficient room
here for a detailed study, which may be found in Lucas (1972) and above all in Balinski and
Young (1982), an excellent and extensive presentation that brings together the historical, -
political and mathematical aspects. Balinski and Young (1983) and Rovira (1977) can also
be consulted on this subject.

The Hamilton method, laid out in §2, is one of the oldest and most intuitive, but its
properties do not reasonably allow us to use it for the assignment of seats. Other procedures,
such as that of Jefferson, have been developed from the idea of calculating a number of
inhabitants per seat such that using it as a divisor of the respective populations and using a
given rule to obtain integer values from the quotients of a total number of seats equal to T.
Other ways of presenting these procedures were later drawn up.

It is interesting to point out that the methods for assigning seats have not been
approached from the viewpoint of minimizing an overall discrepancy function between the
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apportionment and the ideal values. There are historical reasons that justify the non-adoption
of this approach, but the fact is that the authors who have studied the problem have followed
other channels (in some cases it has been proven that a method of assignment of seats
provides solutions that minimize a general discrepancy function, but this appears as a
property of the method and not as the starting point for defining it).

On the one hand, they have established a relation of properties that must be satisfied
by a method for the assigment of seats, they have discussed which properties each of the
known methods has and they have designed new methods starting from a certain list of
properties considered to be essential. But for certain sets of properties there are not ( and it
has even been proven that there cannot be) methods that verify all of them.

Some of these properties refer to the form in which the assignment of seats varies
when the vector of populations (of components p;) changes; since in the Miltenburg problem
the "population” is a fixed piece of information, these properties are not considered here.

One property that it is logical to demand of an apportionment method, and which is
not verified by that of Hamilton, (nor any of the variations on the same which can be defined
from the same basic idea) is house monotonicity (H), that is:

On £ Quey 1= 1,01

which obviously coincides with the condition that must be met by accumulated productions
in the different instants for them to correspond to a feasible sequence; therefore, a method
that enjoys the property H, applied successively for values of h from 1 to T, provides one
or more solutions to the Miltenburg sequencing problem.

Other interesting properties are those that impose a certain relation between the
number of seats assigned by the method, 4, and the quota g, = #hp/P. If we define the
lower quota, lq,), for state i as the largest integer in g» (i.e. lge] = [gul, where []
denotes the function "largest integer") and as upper quota for state i, [g.) as the smallest
integer greater or equal to gy, (gs! = - [-ga)), it is said that a method of assignment of seats
has the property lower quota (LQ) if lg.) < @, is found and the property upper quota (UQ)
if @, < Ig,); it is also said that it has the property quota if it has LQ and UQ (that is, if
lgs) < @ < 1guD.

It is interesting to note that if we consider that % increases unit by unit from h = 1,
and we apply a method that has the property Q, the state i will receive its kth seat for a
value of # within the interval [#’,2"], where A’ is the lowest integer > (k - 1)/ryand A"
the lowest integer > k/r;; therefore, the difference A"k’ is < 1/r + 1 (therefore, in terms
of sequencing of units, if we consider &/r, as the "ideal” instant for obtaining the kth unit of
the product i, by LQ a method which has the property Q will provide sequences in which no
unit will be delayed more than a period in relation to the ideal instant; by UQ the difference
between this and the instant in which the part is finished, or the advance, is < 1/r). If it
only has LQ, the advance may be great; if it only has the property UQ, the delay may be
great. As will be seen in §4, we must calculate the value of the ideal instant by other
expressions, in which case bounds of the advances or delays or both may be established
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according to the properties of the method in relation to the quota. It is also interesting to note
that if 1/r, is integer, the intervals for each unit of each type of product are disjointed and
include exactly 1/r; positions, so the property Q implies that there are no more than 2 units
of the product in each 2/, consecutive positions. If 1/r, is not integer, the intervals for each
unit, which include a number of positions equal to 1 plus the integral part of 1/r, normally
overlap at their extreme position, so Q implies that there are no more than 3 units of product
in each 1+[1/r] consecutive positions. This is only really restrictive if [1/r]23 (considering
2,3,... successive intervals we reach bounds similar to the relation between the number of
units of product and the number of positions in which they are placed; of course, when the
number of intervals is equal to the number of units the relation is precisely 1/r,). Indeed, the
methods that have the property Q tend to provide sequences in which the units of each
product are found spaced with a certain regularity, which corresponds to low values of the
functions that quantify the discrepancy between the profile corresponding to the sequence and
a desired, regular profile.

" An important group of methods is the divisor methods family. A suitable form of
presenting them for our purposes is: the T seats are assigned successively according to the
order deﬁr;ed by the quotients p/d(a;) where a; is the number of seats already assigned to the
state i and d(a) is a monotonously increasing function defined for all the non-negative integer
values of the variable and such that a < d(@) < a + 1. Obviously, as it stems from this
definition, all the divisor methods are H. Among the infinite elements of this set of methods
there are five that can be called traditional ones:

METHOD: Adams Dean Hill Webster Jefferson
| d(a): a @111—) ya(a+1) a+_;. a+l

a+—

As can be seen, Dean’s method uses as a divisor the harmonic average of the values
gand g + 1, Hill’s uses the geometric average and Webster’s uses the arithmetic average.

Another way to define apportionment methods is of course the minimization of some
discrepancy function bewteen the number of seats assigned and the quotas. The traditional
methods have not arisen from this approach, but some, such as Hamilton’s, minimize certain
relatively "natural" discrepancy functions.

Tn the early 20s Huntington focussed on what he called local measures of inequity.
He defined several measures of inequity (64, to be precise) between two states and sought
procedures to determine apportionments such that no switching of seats between states could
improve the measure of inequity for any pair of states. The procedures laid down by
Huntington are of an iterative type: he starts from a solution and then passes a seat from one
state i to another j if this reduces the inequity, until there is no pair that allows a change
involving an improvement. For certain measures the procedure does not converge, but for
others it does; in the latter cases (many measures lead to the same assignment of seats) the
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result coincides with that obtained by one of the divisor methods described above.

Another desirable property for a seat assignment method is that of to be unbiased, that
is to say that it does not tend to systematically favour states of a certain size (the smallest or
the largest, for example). The Adams method favours the smallest, whereas J efferson’s
favours the largest. The only unbiased divisor method is Webster’s, as shown in Balinski and
Young (1982).

Other properties of minor interest are binary fairness (given an apportionment
obtained by the method one cannot switch a seat from a state i to any other state j and reduce
|a.- ¢.| + |a - g|), binary consistency (given an apportionment obtained by the method
one cannot switch a seat from a state i to any other state j and reduce the values of both |a; -
g;| and |4 - ¢|) and near quota (it is not possible to take a seat from one state and give
it to another and simultaneously bring both of them nearer to their quotas - whether the
proximity is interpreted in an absolute or relative sense).

Still (1979) postulates that a method should be H and Q. The divisor methods are H,
but not Q; Still therefore proposes a modification applicable to any method, which determines
an order of priority between states (like the Hamilton method, or any of the divisor
methods), consisting in assigning the seats successively so that the additional seat awarded
in each iteration is attributed to one of the candidate states according to the established
priority (the set of candidates is defined so that property Q is always respected - see
Appendix 1). In fact Still’s idea is a generalization of that already proposed by Balinski and
Young in 1975 to define their Quota Method, which is a modification of Webster’s method
that guarantees fulfillment of the property Q (Still, by the way, does not consider it suitable
to designate the methods by the name of the authors, and puts forward a number of reasons:
possible historical imprecision; different authors for the same method, which has often been
reached from different approaches). Still, following a reasoning for which there is insufficient
space here, considers that the most recommendable apportionment method is Q-LF.

Given a house size, &, and values of p,, the application of a method does not always
provide a single solution, but in general a set of solutions, since there may be ties. For a
method to provide a single solution for each set of data, it must be completed with rules to
break these ties. The choice of these rules is not trivial, and we will refer to it again below.
We can call a method plus a set of rules for breaking ties a procedure.

The table 1 synthesizes the properties of the methods that can be called traditional and
includes some of the different names that have been given to them. In the table we have not
included the subindex 7%, since the application of these methods normally assumes that the
house size is given. All the methods included in the table have another associated to them,
i.e. the same method modified as proposed by Still (these modified methods all have the
properties H and Q). A method, M, modified in this way will be known hereinafter as Q-M.




PROPERTIES

GENERAL DISCREPANCY
FUNCTIONS THAT IT

DESCRIPTION

MINIMIZES

INEQUITY THAT IT
MINIMIZES

LOCAL MEASURES OF

LF (Largest Fractions) | Assigns each state its Q
B Largest Remainders lower quota and then n Binary fairness
fl Greatest Remainders assigns any remaining E Pih_hrilu (uzl) Binary
f Computed Ratios seats, one each, to i=1 consistency
8 Hamilton (Alexander the largest fractions
Hamilton, 1792) G ~ lgud
i Hare Quota max; I a - qil
i Vinton
§ LRF (Lar';gest Relative | Assigns each state its Q
8 Fractions) lower quota and then
' assigns any remaining
seats, one each, to
the largest fractions
(G - 90D/
SD (Smallest Divisors) | Divisor method with H, UQ
{ Adams (John Quincy da) = a ; '
| Adams, 1832) max;—
a;
a,~—a2>0
J
P;

Table 1.- Traditional apportionment methods.




8 HM (Harmonic Mean)
Dean (James Dean,
) 1832)

DESCRIPTION

FUNCTIONS THAT IT
MINIMIZES

GENERAL DISCREPANCY

Divisor method with

(@)= a(a +11)

LOCAL MEASURES OF
INEQUITY THAT IT
MINIMIZES

a+=
2

PROPERTIES

Table 1 (cont.).- Traditional apportionment methods.




8 EP (Equal Proportions)

l Geometric Mean

| Hill (Joseph Hill,
| 1911)

f Main Huntington

Method

DESCRIPTION

GENERAL DISCREPANCY
FUNCTIONS THAT IT
MINIMIZES

PROPERTIES

Divisor method with

d(@)=ya(a+1)

LOCAL MEASURES OF
INEGQUITY THAT IT
MINIMIZES

Table 1 (cont.).- Traditional apportionment methods.
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| Arithmetic Mean

# Odd numbers

§ Webster (Daniel
i Webster, 1832)
il Willcox

B Sainte-Lagiie

DESCRIPTION DISCREPANCY

FUNCTIONS THAT IT
MINIMIZES

Divisor method with

R MF (Major Fractions)

1
d ={14—
(a)=a 5

LOCAL MEASURES OF

INEQUITY THAT IT

a, a,
—-—1>0

p; P

Table 1 (cont.).- Traditional apportionment methods.
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Does not have the
property Q, butin J
fact it violates it  §
on very few




NAMES DESCRIPTION GENERAL DISCREPANCY | PROPERTIES
FUNCTIONS THAT IT

MINIMIZES

LOCAL MEASURES OF
INEQUITY THAT IT
MINIMIZES

§ GD (Greatest Divisors) | Divisor method with H, LQ
B Rejected Fractions
il Assumed Ratios d(a) =a+1
| Highest averages
Jefferson (Thomas
B Jefferson, 1792)
 Seaton
d’Hondt %.b;
Hagenbach-Bischoff

Table 1 (cont.).- Traditional apportionment methods. '

In short, we have 14 methods:

LF (Hamilton), Q-LF, LRF, Q-LRF, SD (or A - Adams -), Q-SD (or Q-A),
HM (or D - Dean -), Q-HM (or Q-D), EP (or H - Hill -), Q-EP (Q-H), MF
(or W - Webster -), Q-MF (or Q-W), GD (or J - Jefferson -), Q-GD (or Q-J)

of which all, except LF and LRF have the property H.

4.- Solving the Miltenburg problem: procedures based on methods applied to the
apportionment problem and exact procedures

As we have said, any apportionment procedure that has the property H applied to the
values of % between 1 and T provides a solution to the Miltenburg problem. As we have
seen, some methods minimize general discrepancy functions or local measures of inequity.
A method that does not have the property H and that minimizes a general discrepancy
function provides a lower bound of the optimum value, which may be useful in algorithms
that use bounds, such as branch and bound or BDP algorithms (this is the case with the
Hamilton method or LF with respect to function (2) used by Miltenburg, but also with
respect to function (4) or any function in which the module is raised to an exponent no lower
than one; moreover, it is to be expected that the Q-LF method is a good heuristic for
optimizing any of these functions.

12
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It also seems reasonable to establish the objective of obtaining a sequence that fulfills
certain properties (e.g. LQ, UQ or Q); in this case we merely need to choose an
apportionment method to ensure them. A method such as W or Q-W normally provides
balanced sequences, in accordance with the habitual criteria.

Another possible approach, as has been said in §2, consists in taking as a reference
the instants in which we wish to dispose of each unit.

This is the approach taken by Kubiak and Sethi (1991) and Inman and Bulfin (1991).
Both works determine the due date, ©,, for the kth unit of product i by means of the
expression:

0= ©)

Kubiak and Sethi calculate costs related to the advances and delays with respect to
these due dates and propose an assignment problem to minimize the total costs; according
to the authors, from the solution to this problem we can deduce an optimum solution for the
Miltenburg problem with the discrepancy function (2). Inman and Bulfin introduce the
functions:

n P
PP A )
i=1 k=1
n B '

. -6 8
i=1 k=1 Flk ikl ( )

in which z, are the dates corresponding to the obtaining of the kth unit of product #, and they
observe that the problem of minimizing these expressions coincides with a single-machine
scheduling problem with unit production times and with due dates equal to ©,, for which the
optimum solution is obtained by ordering the units (or jobs) following the Earliest Due Date
(EDD) Rule. The solutions obtained by this procedure, which are optimal for functions (7)
and (8), are also good solutions for function (2). Indeed, it is easy to check that the
application of the EDD rule with the due dates, calculated with expression (6), coincides with
the application of the MF or Webster method, which reveals a new connection between the
Miltenburg problem and the apportionment problem.

As can be seen, the authors of the two works summarized in the previous paragraphs
introduce their approaches rather as a channel for finding solutions to the problem formulated
by Miltenburg than as problems of interest in themselves. In our opinion, however, the
approach through the due dates and the costs associated with the discrepancies in the same
are interesting in themselves, because they provide a conceptually solid basis for seeking the
solutions. Also, the way to determine the values of ©, is not essential in any of the two
works mentioned and the procedures may be extended immediately to due dates calculated
with other expressions (for example, replacing the value 0.5 in expression (6) with another
non-negative value no greater than 1; in this case the application of the rule EDD is

13




equivalent to the application of a divisor method for the apportionment problem) or to any
set of increasing monotonous sequences of due dates, which may therefore be, for example,
agreed delivery dates of units to customers.

Finally, the optimization of the general discrepancy functions, whether they refer to
production or time, can be dealt with by BDP. This is a Dynamic Program in which the
states of each stage are characterized by the number of parts of each type already sequenced
and the decisions consist in determining the part to sequence next in which a state is
eliminated if a bound associated to it (which for some general discrepancy functions can be
obtained by a procedure such as LF) is greater than the value of a solution determined
heuristically (for example with an apportionment method or with some greedy heuristic).

5.- Computational experience

Though, as we have pointed out, the choice of a procedure may be based on its
properties and not on its capacity to minimize one objective function or another, it seems
interesting to check how the solutions provided by each procedure behave when they are
evaluated with different criteria.

The problems dealt with were:

n= 3,P=13(3,13): 14 instances
n= 4,P =53 (4,53) : 1089 instances
n =19, P = 31 (19,31): 77 instances

to which we applied the 12 house monotone procedures described above and a procedure
which also has this property and which we have called pseudo-Hamilton (PH). It consists of
calculating ¢, and assigning the seats successively, each seat to the state with the largest
quota, subtracting one unit from the quota of the state to which the seat has been assigned.
Of course, the procedure is house monotone and if the number of seats is equal to the total
population, as is the case in the determination of the sequence, it is limited to sequencing the
units of the type of product that has the most units pending assignation. Furthermore, the
heuristics of Miltenburg have been applied to all the instances. These heuristics (abbreviated
as M1 and M2) consist, in synthesis, of progressively constructing the sequence, choosing
at each position the type of product with production pending that minimizes function (2) (M1)
in this position, or the first type of product of the pair of units that minimizes (2) among the
ordered pairs that can be formed with the products that still have production pending (M2).
Therefore, for each instance 15 sequences have been obtained (some of which may coincide)
and all of them have been evaluated with the criteria defined in Appendix 2. Moreover, for
the criteria of production of type =, two more sequences have been obtained and evaluated,
with the corresponding heuristics of the families named P1 and P2 (similar to M1 and M2
but replacing Miltenburg’s function (2) with the one corresponding to the criterion in
question; the heuristics of P1 and P2 corresponding to the criterion %/q/A coincide with M1
and M2). For the criteria of times (dates) of type = an additional sequence with the heuristics
corresponding to a family that has been called DD has been obtained and evaluated (in
synthesis, they consist in constructing a sequence by choosing in turn the kth unit of a type
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of product - among those yet to be assigned - and the position that it will occupy among
those as yet unoccupied. For the 14 instances of the case # = 3 and P = 13 we also obtained
the optimum solution for the criterion =/g/A, by BDP.

With reference to the production criteria, (with A and R), M2 always obtains the best
results, though it is a procedure designed for the criterion £/q/A. In fact, this is not totally
surprising, given the relation between A and R and bearing in mind that unless the Alabama
paradox occurs LF optimizes both £/q/A and =/A/A (of course, Q-LF also obtains very good
results for these criteria). For the criteria with 6, W is the best for /4 =0.5 and =/m and
it is also good for M/A=0.5, though in this case it is excelled by J and PH (which are quite
similar); in the other criteria of type = the best procedures are the heuristics of the families
P1 and P2; however, for the remaining M criteria, the procedure PH provides the best
solution obtained in all the instances.

For the 14 instances of case (3,13), as stated in the previous paragraph, an optimum
solution was reached for the criterion =/g/A, which coincides with that used by Miltenburg;
in all the instances M1 and M2 reach the optimum with the sole exception of the instance
defined by n,=6, n,=6, n;=1, in which M2 reaches the optimum but M1 does not (the value
of the solution differs from the optimum by approximately 10%).

As for the time criteria, the parameter « has a decisive influence. For a=0.5, the
procedure which is clearly dominant is W (which even optimizes some criteria), though it
is at times excelled by Q-W, but M2 is "B" for some criteria of the type M. For a=0, the
dominant procedure is J (it is also optimum for a certain number of criteria), with quite a few
exceptions that can be seen in table 4 (for some criteria the best procedures are W, Q-W and
also, but only on three occasions, the specific heuristics of the DD family; the larger
dispersion occurs in the criteria M/§ (in which according to the criterion the best procedures
are Q-H, Q-LF, M1, W and, of course, J y Q-J).

The behaviour of the set of instances corresponding to case (3,13) and those
corresponding to case (4,53) are very similar. Case (19,31) shows slight differences with

respect to the previous ones.

Tables 2, 3 and 4 show a summary of the results obtained for case (4,53).
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. .CRITERION

PROCEDURE

QA

QD

QH

QW

]

QU

QLF

[0,1]

(0,1

0.5

08

PH

Ml

Pt

Obs.

(8]

B+

B+

B+

{0,1]

f0,1]

0.5

0.8

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

B+

Table 2.- Summary of the results for the 1089 instances of case (4,53). Criteria based

on the production.
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CRITERION

PROCEDURE

QA QD QH w QW J QJ QLF Q PH Ml M2 DD | Obs
LRF
A - * 10
[0,1]
3 B+
0
10.5 3 B+ a
3 B+
0.8
3 B+ a
1
2 A B
<
3 B
A * 11
q
3 B+
A B
m
3 B
A B
0
3 a B
0
os |4 B
os |3 B
i
A B
0.8
3 B
M| 038
1 a B
1 3 a B
A B
<
3 a B
A a w
q ——
3 a B
A B+
m
3 B+ a

Table 3.- Summary of results for the 1089 instances of case (4,53). Criteria based on

the times (¢ = 0.5).
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PROCEDURE
CRITERION AT or ] D] H ]| W]aw] J Q JQLF] Q |[PH| M1 | M2 | DD | Obe
LRF
Y * B+ 12
[0,1]
3 B
0
aos |3 ’
0.8 3 B
S = | B+ 13
A B
x (-}
3 B
A * 14
q
3 B+
A B
m
s B
A B
0
3 B
0
0.5 A B
o5 |3 2 ¥ ¥
N - .
A B
0.8
3 B B
M| 08
| A = | B+ 15
Nl = | B+ 16
A a w
]
3 B a
A a w
q v—
3 B
A B+
m
3 B+

Table 4.- Summary of the results for the 1089 instances of case (4,53). Criteria based
on the times (¢ = 0).
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NOTATION USED IN THE TABLES, COMMENTS AND OBSERVATIONS.

NOTATION:

a best average

w best result for a greater number of instances

B LP and "w"

B* the best in all instances

* the procedure finds the optimum for the criterion

ok the procedure. finds the optimum for the criterion and its value is zero
COMMENTS:

The averages were calculated with a precision of only two decimal points, which explains the apparent

ot

contradiction that for some criteria a procedure is "B*" but there are other "a"s.

The fact that in some criteria a procedure is "B" but there exist other "a"s is not contradictory: the
cause may be the same as that mentioned in the previous paragraph.

OBSERVATIONS:

1.- This criterion is the sum of Miltenburg’s function (4).

2.~ This criterion is the sum of Miltenburg’s function (3). :

3.- This criterion is the sum of Miltenburg’s function (2), which is the one that he in fact uses in his work. For
this criterion the algorithms M1 and M2 coincide formally with those of the family P1 and P2 (the best average
is obtained with M2 and P2, but the number of times that P2 is better is slightly higher, only because of the
insignificant differences caused by details in the implementation.

4.- This criterion is the sum of Miltenburg’s function (1).

5.- This criterion is the maximum of Miltenburg’s function (4).

6.- This criterion is the maximum of Miltenburg’s function (3).

7.- Tt can be proven that the value of this criterion is n - 1 for any sequence, and an optimum solution is
therefore obtained whatever procedure is used. It is therefore of no interest, but is included to complete the
table.

8.- This criterion is the maximum of Miltenburg’s function (2).

9.- This criterion is the maximum of Miltenburg’s function (1).

10.- Webster obtains the optimum solution (it coincides with the EDD rule used by Inman and Bulfin for the
quadratic function that, as the authors point out, also optimizes the absolute value function, which corresponds
to A=0.5. In fact, it also optimizes the function of any value of A in [0,1]).

11.- Webster obtains the optimum solution (see observation 10).

12.- Jefferson obtains the optimum (of value O for A=1) for reasons similar to those of observation 10. In fact,
Q-] also obtains the optimum in all the instances both in this case (4,53) and in the other two that have been
dealt with.

13, 15 and 16.- Jefferson obtains the optimum, of 0 value (in these criteria we must minimize a function of the
delays in relation to the due dates calculated with «=0 and it can be proven that J produces a sequence without
delays). In fact Q-J also obtains the optimum in all the instances of the three cases dealt with.

14.- Jefferson obtains the optimum for reasons similar to those of observation 10.
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6.- Synthesis and conclusions

Research into the apportionment problem allows us to make a thorough study of the
Miltenburg problem, and reveals the difficulties involved in finding an approach that is valid
in all cases. The desired sequence may be that which optimizes a given objective function,
but there is also the possibility of simply imposing the fulfilment of certain restrictions or
properties. The procedures for assigning the seats in a chamber of representatives may be a
simple and quick way to obtain sequences with interesting properties and a good evaluation
for many reasonable discrepancy functions, both with reference to production and time.
Indeed, if we wish to obtain a "balanced" sequence, some procedures for assigning seats are
an alternative that should be considered. Some, however, optimize certain discrepancy
functions and others provide bounds that can be used in algorithms of an exploratory nature.
If we wish to sequence prodeuts of different types with preestablished delivery dates, we
impose the minimization of the total possession costs and delivery delay costs that, as stated
by Kubiak and Sethi (1991), can be approached and resolved, for any dates, as an affectation
problem. : :

The coincidences between the Miltenburg problem and the apportionment problem
have made it possible to extend Miltenburg’s approach to other discrepancy functions.
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Appendix 1: Determination of the eligible states in Q-methods, according to Still
(1979)

The eligibility set E(%) at any house size 4 consists of all states which satisfy both of
the following tests:

Upper quota test:
Qs < g,
Lower quota test:

Let A(i) denote the smallest house size #’ > h at which lgwl > @,y + 1 and
define for each house size, g, such that # < g < h(i), and for all states the
quantities s,(g,i) as follows: ‘

5(g,0) = @ + 1
5,(g,i) = max [a,., lg, 1 (forj # 1)

Then, state i satisfies the lower quota test if A(7) = h or if there is no house
size in this interval for which = 5,(g,i) > g (the lower quota test is satisfied
if h(i) = h).

Of course, an eligible state must satisfy the upper quota test because otherwise, on
assigning a seat to it, the solution would no longer satisfy UQ. It also has to satisfy the lower
quota test in order to prevent it from being impossible to satisfy the property LQ for a certain
house size g for another state due to a seat having been assigned to it prematurely.

Some methods allow simplifications in the determination of the eligible group. Thus,
in the Q-LF method it is not necessary to carry out the upper quota test and in the Q-MF (or
Quota Method) the more laborious lower quota test can be eliminated.

Of course, in general it is shorter to test whether these are eligible or not (until we

find one that is), in the order that the method establishes for the states, than to first determine
which states form part of E(%). :
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Appendix 2: Criteria for evaluating the solutions

As we have said, the discrepancy between the ideal values of the production or of the
instants of manufacture may be expressed in a potentially unlimited number of ways. Those
that have been considered for the evaluation of the algorithms are described below.

The programmed values for the production are contained in matrix A, (whose
elements are ay, i = 1,...,n; h = 1,...,T) and the ideal values in matrix Q (with qi, = hp,/P
=hr,i=1,.,nh=1,.,T.

We have considered three measurements of the discrepancy between the programmed
and ideal values, viz:

A(ay,hr)=a,-hr,
a,~hr;
hr

R(a,hr)= f}-i—"— -1,

8(ayhr)-

i.e., absolute difference, relative difference and difference between production rates.

We have also established the following discrepancy functions in an instant 4:

With ¢ €{A,58,R}:
n
2, (1) =ZE { ».max[g(a,,hr),0]1+(1-A).max[-@(a,,hr),0]
with O0sA<1

zeqa (k) = Zl: [‘P (al.k,hr z')]2

2=y [oa,hr]
i=1
2 () =mas, | p(az hr)|

And finally the following general discrepancy functions:

23




e e A o e S0 e A

With ®c{i,e,qm} and ¢c{A,8,R}:
ZSQQ)(A)Q) =2 zq&q,(h)
A=1
Zsz(p(AaQ) “Max,zn, <P(h)

Which therefore gives a total of 24 x 4 x 3 = 24 types of general discrepancy

functions. For @€{A,R} the value of the function is independent of the value of 4 ;

for =8 we considered four values of A (0,0.5,0.8 y 1); in short, 30 different

discrepancy functions.

With regard to times, the programmed instants of finishing the units are contained in
the matrix T (whose elements are £,, i = 1,...,n; k = 1,...,p) and the ideal values in the
matrix ©, (whose elements are 6, = (% - a)/r for i=1,..mk=1,...p,with0O<ax

1). We con51dered two measurements of discrepancy between the programmed and 1dea1 :
values, which were similar to the functions A and § used for the productions, i.e.:

A (t,-kse;k(a)) —t;k_ ;k(“)

()
8,0 ()1 50l )
ik zk()

And the following four discrepancy functions for a product:

szk pc{A,8}:
z,&(l)‘z { A max[e[t,,0,(e)],0]+(1-A).max[-¢[#;,6,(«)],0]
with Os),sl

Py
z,, () =\l § [p(23,0(e))

Py

2,0 =Y [0(t,0 ()T
k=1

Z, o (D) =m02%; | [£,6, ()] |

And finally the following general discrepancy functions:
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With de{i.eqm} and pe{A5}:
ZSQq)(T’e«) =E z@wp(i)
i=1
ZM@Q(T ’ec) =max‘iztbq>(i)

In short, 16 types of discrepancy function. We have used two values for a (0 y 0.5)

and four (0, 0.5, 0.8 and 1) for A (except for the combination S, A for which the

values of Z corresponding to two values of A differ in some constant). Altogether,

therefore, 50 different discrepancy functions.
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