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Abstract:
The different models of a particular article for widespread
consumption are characterized by the material wused and 1its

length.

Each material is. acquired in Jjumbos of a particular length.
By cutting them, we must obtain for each production period at
least as many items for each model as are required to cover
consumption for the following period; anything above this value

will be used in later periods.

In order to minimize the cost associated with this process
(that of cutting plus the inventory holding cost), procedures
combining ILP with heuristics based on dynamic programming have

been designed and applied.

Keywords: Cutting problem,-integer linear programming, dynamic

programming, heuristics
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1.— Introductian

This .. work describes the procedures tested and adopted in
solving a one-dimensional cutting problem which occurs in
industry; a descripﬁion of the system in which these procedures
are inserted can be found in Corominas, Bautista and Companys

(1989).

Dne of the first steps in certain production process consists
in cutting jumbos to obtain items of‘different lengths. Thére are
several types of materialsiand the jumbos of each of them have
the same’length; the items are characterized by the material and
by the length (each pair material/length will also be called the

model or product).
S

The production of units of each model, together with the stock
available, must be sufficient to cover the day 's consumption and
to provide a certain safety stock. The items not consumed on the
same day may be used on later days, since although " the daily
consumption 1is not constant it is fairly étable. A certain
production in excess . of the necessary minimum 1is Eherefore
admissible, though it should mot, of course, exceed certain
bdunds. Indeed, the prod4ction plus the stock shouid be within
bounds whi;h may be calculated as the product of coefficients
which are greater than one, multiplied by the daily consumption.
Storing the excess producf}on of items for a certain number of
days has a cost (althougt far lower thamn that of wastage), but

the possibility of excess production permits a general reduction

in wastage.

‘We must therefore establish a cutting pattern for each jumbo
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which minimizes the overall cost of cutting and stocks. This
leads to. the problem of establishing the optimum cutting plan for

a given number of jumbos of a given material.

2.— A brief review of the literature on the cutting problem

The problem presented in the previous section may be

classified as a one-dimensional cutting problem.

[t 1is not our intention here to provide a complete list of

‘references - for this see Sweeney (1989) -. Here we only wish to

mention some works directly related to the present one.

Hinxman (1980) is a very complete study. Dyckhoff and Gehring
(1988), Dyckhaff, Kruse, Abel and Gal (1988), Dyckhoff, Finke and
Kruse (1988) and Dyckhoff (1990) are also very useful; the first
of these references includes a description of the Dyckhoff model,
based on the "one cut" technology, which has to a certain extent
inspired the heuristics based on thé dynamic brogramming

described below.

The model which is normally proposed in the literature for

one-dimensional cutting models is formulated with variables which

. express the number of times that each cutting pattern is applied;

The Dyckhoff model, which is advantageous in some cases; is to 'a
certain extent a versian of—the above. This approach invblves,‘o%
course, two problems: the very high number of cutting patterns
(and thus of variables) and the fact that itvrequires an integral
solution. The first of these difficulties may be overcomed with

the procedure of column generation devised by Gilmore and Gomory

- Gilmore and Gomory(1241) and Gilmore and Gomory (1963) -, 1in
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which the resolution in each iteration of a knapsack problem
allaows ué to obtain a new pattern; but the information published
on the convergence of this'procedure is not very precise; it is
also very strictly dependent on a particular structure of the
model and is therefore fragile to the presence of additional
conditions. The resolution of the linear program also produces
results which are very rarely integral; the most immediate answer
to this is rounding off, but it is not always easy to assess the

repercussions of this course of action.

Another paper, which refers exclusively to the one-dimensional
problem, is Costa (1982), whose main interest is its formulation,

although it diverges from it whem it proposes methods of

.resolution. This formulation differs from that referred to in the

previous paragraph, since the variables correspond to thé number
of units of each product which are obtained from each unit of raw
material.vEscudero (1976) also presents a similar approach. This
approach has the drawbacks that in general it is not possible to
obtain satisfactory solutions by rounding off those obtained with
linear programming, and that the bounds brovided by the latter
are of little use, at least in fhe first vertices of the tree in

a branch and bound algorithm.

lJohnson (198%) includes—é comparison of the two formulations
laid out. Johnson quickly rejects that known as "naive", because
"the variables do not represent important decisions. For example,
deciding phat a given roll will not have any of barticular 1engthb

cut from it has very little effect on the linear programming

solution because that length can always be cut from some other
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roll. In a way, there 1is Jjust too much symmetry in the
formulation”. He then goes on tao explain the column géneration
procedure of Gilmore and Gomory and compares it with the naive
approach through an éxample. On the whole, Johnson’'s argument 1is
not very convincing, although it 1is true that the first

formulation is excessively symmetric.

In "a work published after we had developed, programmed and
tested our own heuristics - Haessler (1988) -, the author is
decidedly- in favor of this type of procequre and critical of
those who are uncompromisingly in favor of strict optimization
procedures. We also had the satisfaction of discovering the
coincidence of some ideas which we had incorporated into our

heuristics with those laid out by Haessler.

3.— General approach of the resolution procedure

The problem may be formulated as a non-linear integer program,
which is "non-linear because of the criterié of optimization
adopted (the minimization of the ratio between the cost ahd. the
value of the product obtained). For a single tyﬁe of material we .
can forﬁulate a linear model which provides a good
approximation, but in the case of several materials this is not
possible, and the cutting of each material cannot be obtimized

separately because there are common restrictions (the time

avalilable for the cutting process, faor example).

Now, the number of jumbos of each type of maferial to be cut
has upper and lower bounds which are easy to determine a priori.

If we establish which cutting patterns are to be used for each
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possible value of the number of jumbos of each material to be
cut, we can calculate the cost, the value of the production and

the running time for each of these partial solutions. With this

information on the partial solutions, with a partial solution for
each material we can form each general solution, check whether it
is feasible and if so, determine its relative cost. Thus, with a

simple enumeration or by dynamic programming, we obtain the best

general solution.

We therefore require a procedure for calculating partial

solutions.

In the application  which led to the development of the
procedﬁre described, the length of the items was small bin
relation to that of the jumbos - a soft problem, according to the
classification 'included in Gleimis (i??O)‘—, so the number of
cutting patterns was very higH. On the otber hand, the number of
types of materials and types of items, as well as the number of

jumbos to be cut in a day, were low.

For all these reasoﬁs a.model whose most important variables,
X(J,14), correspoéd to thé number of items of each type to be cut
from the jumbo j was very compact. Note that‘here the index j 1is
a simple serial mumber, with no other meaning (for a material all
jumbos have the same length); this_order is arbitrarynand, as we
have said, will give the formulation an undesirable éymmetry,
which may be avoided by means of a certain refinement in the

modelling which will be laid out below.

The resolution of the model may be carried out by . integer

linear programming, with heuristic algorithms or with a
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combination of both types of procedures.

4.— Linear models

4.1.— Basic model

According to the consumption and stock of items available,
each model we can establish every day upper and lower bounds
the number of items, n(i), to be obtained in the cutting of

jumbos:

1(1) £ n(i) £ u(i)
If we give the name c(i) to the expected daily consumption
s(i) to the available stock, these bounds are calculated with

expressions:

1(i) = ac(i) - s(i)
u(i) = Bc(i) - s(1i)

Where a and B are parameters to be determined by the user

[\

course, with the conditions a £ B and a, B 1.

We can therefore formulate an integer linear program
follows (where all the variables [n(i), x(j,i), r(j)l are

negative integers).

- d I ’

[MIN] z = {CZ r(j) + 2 hii, n(i)-1(i)13r (
' j=1 i=1
J
n(i) = £ x(j,i) Ci=l, 00,1 (
i=1

dJ
E a(i)x(j,i) + r(j) = A Jj=1,¢e.,d (
i=1 :

7

for
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1.2)

1.3)
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1(1)

B PaN

Nn(i) £ u(i) I=1,...,1 (L.4)

In

r(j) min a(i) - 1 S J=l,4..,Jd (1.3)

bl

x(j,i) ¢ INT[A/a(i)]

q(i) j=1,...,d (1.4)
i=1l,...,1

The notation which has not vyet been made explicit is:

C cost of the material per unit of length
n{i) number of items of length a(i) produced
r(Jj) length of wastage of the jumbo j

A length of the jumbo

INT (%) greaﬁest integer 5 X

hLi,n(i)-1(1)] cost associated with the production in
excess of the minimum 1(1)

q(i) maximum number of items of length a(i)
which may be obtained from a jumbo

The cost associated with the process is that of‘the off-cuts
plus that of fhe non—-essential stock. The cost of the stock is
expressed in (l1.1) as a sum of functions (one for each kind of
product) corresponding to the coéts of stqring a number of 1items
greater than the strictly essential minimum, 1(i). The nature of

these functions is specified below.

Constraints (1.2) 'link the variables x(j,i) with .the total
number of items of eacH type; constraints (1.3) express that the
sum of the lengths of the items cut plus that of the wastage is‘
equal to the length of the-~jumbo; constraints (1.4) impose the
upper and lower bounds of the total number of items of each type;
constraints (1.95) establish the upper bounds of the length of the
wastage of each jumbo, lower than the minimum le;gth of the items
- only complete cuts or cutting patterns are used, according to

the terminology used in Stadler (1990) -; finally, constraints
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(1.6) make explicit the upper bounds of the variables x(J,i);

which are implicit in constraints (1.3).

As we have said above, the processing of the cost of the
stocks forces us to introduce more variables and constraints due
to their non-linear nature. The processing will use "the value
T(i) (smallest integer 2 the quotient INT[u(i)-1(i)]/c(i), which
corresponds to the number of days needed to consume the
production in excess of thé essential needs); it may be written:

> T(1i)
n{i) — 1(i) = 2 viisk)
k=1
where thebvariables v(i,k) represent the consumption for day k,

counted from the present date; of caourse:

) O £ v(i,k) £ c(1i) ¥i,k
Theréfore:
T(1)
hfi,n(i) — 1(i)] = ©Ca(i) ¥ kv(i,k)
k=1

where © is the daily holding cost of a item of cost 1.

If 1(i) is nmegative (this corresponds to an excess of stock,
even without production of type i items), the approach 1is also
valid, with slight adjustments. Here we will suppose that 1(i) 2

O.

In accordance with all these considerations, the basic model

is finally as shown:

J I T(1)
[MIN] z = C [ Z r(t) +8 Z a(i) £ kv(i,k)] (2.1)
i=1 i=1 k=1
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n(i) = £ x(j,1i) i=1,...,1 (2.2)
i=1
T(1i)
n(i) = 1(1) = 2 v(i,k i=1,...,1 (2.3)
k=1 . )
I
Z a(i)x(3,1) + r(j) = A i=1, s J (2.4)
i=1
1(1) £ n(i) £ w(i) i=1,..0.,1 (2.5)
F{(j) & mip a(i) — 1 = a(i’) - 1 i=l,...,J (2.6)
i

x{j,i) £ g(i) J=l,.c..,d i=l,...,I (2.7)

O £ v(isk) £ minfc(i),u(i)—1(i)—-(k-1)c(i)]

5
£ oT(1) (2.8)

4.2.— Improved model

We have considered two types of improvement in the model:

a.— Improvements in the formulation of the constraints.

Given A and a(i) (i=1i,...,I), we can calculate the maximum

length achievable (A'). The problem may be approached thus:
I
[MAX] A’ = 3 a(i)x(i)
I
- 2 a(i)x(i) £ A

with the x(i) integral and such that O < x(i) £ q{(1i).

This 1is thus a knapsack problem (KP), and more specifically
the particular case in which the coefficients of the objective

function are the same as those of the constraint, which is known

10
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as the "subset sum problem".

In order to solve it we can wuse, for example, a dynamic

programming procedure.

Once we have determined A', it can replace A in the right-hand

side of constraints (2.4)..

But we can still improve the formulation of these constraints
by adopting the greatest common divisaor of the a(i), which will
also be a divisor of A’', as the unit for measuring the lengths

invalved in each problem,

The tests confirmed the effectiveness of these simple'

improvements.

Another, less intuitive, improvement, but one which has also

been compared experimentally, is that described below.

The fact that the length of the wastage is aiWays lower than
that of the product of least length (of index 1i'), determines a
lower bound of the number of items obtained from a “jumbo (the
greatest number of units ' obtainable from the model of greatest
length - of index i" -). An upper bound 1is obviously g(i’}).

Therefore:

I
qQ(i") £ Ex(j,i) S q(i’)
i=1 :

and if the sum is called g(j)

q(i™) £ g(3i) £ g(i’)

or, making g(j) = g(i") + g ' (j):

11
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Now, as 1' is the index of the product of minimum length, it

can be written:

v
o]
<€
'.J

a(i) = a(i’) + a’' (i) con a (i)

and thus:

Za(i)x(j,i) = EZfa(i")+a’" (1)Ix(J,1i) = a(i")Ex(j,1)+Za " (i)x(j,1i) =

-

a(i’)g(i)+Za’ (i)x(j,1) = a(i")lg ' (J)+g(i")I+Za’'(i)x(j,1i) =

a(i’)g (j)+Za’ (i)x(i,j)+a(i’)g(i")

U

and therefore the constraints may be formulated as follows:

a(i‘)g’(j) + Za' (i)x(i,3) + r(j) = A" = a(i’)g(i")

b.— Discriminating between eguivalent solutions.

The fact that the jumbos are numbered gives rise to different
solutions, which are equivalent with respect to the criteria
incorporated in the model. From this point of view, it does not
matter i1f we cut Jjumbo j with a given pattern and j; with
another, or if we perﬁutate the cutting patterns of bqth. This
means that a branch and bound algorithm explores different
equivalent branches which, -‘however, correépond to formally

different groups of solutions.

It is therefore advisable to discriminate between these
equivaleﬁt solutions. A simple way of doing this (with which J-1
additional constraints are sufficieﬁt),‘which ,gave. very good
results in the tests carried oht, consists in considering each
group of variables x(j,i) (i=t,...,I1) as a vector and accepting

only solutions in which these vectors are lexicographically

12
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ordered. Since Q(i), as we have said, represents the upper bounds
of x(j,1), this condition may be imposed with the comstraints:
I I

I
x(j,1) m [g(l)+1] 2 2 x(j+1,i) m [g(l)+1] J=l,...,d-1
1 l=1i+1 i=1 1=i+1

™M

i

The coefficients of these constraints depend on the order
ecstablished for the different prcducts; It is therefore best to
arrange them in increasing order, since this gives a monotonously
decreaéing sequence of the q(i), and therefore coefficients with

lower values.

In addition, the incorporation of these constraints allows us

to obtain solutions ordered in such a way that they can

torrespond to the real SEQuence of the cutting process of the

material (the Jjumbos with - the same cutting pattern are

consecutive).

In accordance with all the coﬁsiderations made, for the
optimization of ghe total cost with J jumbos of a given material,
we can propose the intéger linear program ﬁhat follows, with the
same notation as has been used throughout the text and with the
variables integral and non-negative. As can be seen, this is  a
compact model of.a fairly small size (the number of non-bound

constraints is equal to 3J3+2I-1):

I T(1)
r(j)y +© = a(i) £ kv(i,k) + £Jd , (3.1)
1 i=1l k=1

N ™Ma

(MIN] z =
' J

n{i) = 2 x(j,1i) i=1,...,1 (3.2)

13
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a(i’)g ' (J) + Za’' (i)x(i,3) *+ r(j) = A" - a(i’)g(i")
i
j=1l,...,4d (3.3)
L x(J,1) — g (j) = g(i") J=l, 44, d (3.4)
1 .
i=1l,...,1 (3.3)

n(i) — 1(1) = 2 v(i,k)
ok

I I

2 x(jsi) m [g(l)+1] 2 Z x{j+1,i) w [q(l)+1]

1 1=1i+1 : 1 l=i+1

1(i) £ n(1) £ u(i)

‘r(j) £ min a(i) - 1 = a(;’) -1

1

x(J,1) £ g(i)

O 2. g'(j)y £ g(i")y — g(i")

0 ¢ v(i,k) & min[c(i),u(i)=1(i)=(k=1)c(i)]

i=l,...,J-1 (3.6)
i=1,...,1 (3.7)
j=l’lll,J (3-8)
J"l’---,J

i=l,...,1 (3.9)
j=1,...,d (3.10)

i=1,4ea,l

< k £ 1(1i) (3.11)

4.3.— Model for optimization of the relative cost

As we have said above, for the case of

. can propose an ILP for an approximate

relation between the cost and the value
approximation consists in minimizing the
cost and the number of jumbos (situated a

M)

[MIN] &

M

14

a(i)x(j,i) + r(j) = A | =

a single material we
minimization of the
of the product. The
relation between the

priori between m and

(4.1)

l,0c0,m (4.2)
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T oa(i)x(jsi) + r(J) = Ay(i) j=Em+l, 00, M (4.3)
i=1 :
1(i) € n(i) £ u(i) i=1,.00.,1 (4.4)
r(jy &£ min a(i) - 1 j=l,...,M (4.5)
i .
x(j,1i) £ g(1i) J=lyeee, M (4.6)
1=1,0au,1
g= CZ r(j) + Z hli, n(i)-1(i)] (4.7)
J i '
l -
o £ & + By(j) j=m+l,...,M (4.8)
Jj-1
U .
- &£ 8 (4.9)
M
y(i+l) < y(3) : j=m+l,..., M-1 (4.10)
ALl the variables are non—-negative 1integers, with the

exception of & and o, and the y(t)e{0,1}.

The aim is to minimize the variable & which represents the.
cost of the wastage and of the excess stock in relatimh to the

cost of the material corresponding to the jumbos cut.

The variables y(t) are associated to each of the jumbos above
the minimum m; the variable_has a value of 1 if the jumbo i1s cut

and O if it is not.

Constraints (4.2) and (4.3) correspond respectively to the
jumbos which will certainly have to be cut and the ones for which

the operation must be determined by the program.,

Constraints (4.4), (4.9) and (4.46) are analogous to those

which appear in the models mentioned above.

15
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Constraints (4.7) define the cost which constitudes . the

numerator of the guotient which determines §.

Constraints (4.85 and (4.9), which should be considered
together taking into account constraints (4.10), link the value
of & to that of o through the y(t). Indeed, constraints (4.10)
prevent the cutting of a jumbo if the previous one is not cut, so
the acceptable values for the components of vector Y are only of
the typé "sequence of ones, perhaps empty, followed by a sequence
of zeros, perhaps empty". When y(t) = 1, the correspondiﬁg
constraints (4.8) are inoperative, because it is always fulfilled

that:

o < & + B  t=m+l,...,M
if B is a sufficiently large value.

4.4,~- Extensions

The .fun;tions h [i, n(i) = 1(i)] may have a different form
from that supposed up fo now. This responds to the hypothesis of
constant daily consumption and indefinite conservation of the
product obtained, without loss or deterioration. But there is no

difficulty in adapting the functions b to some other assumptions.

For example, if we wisH to produce a given guantity of items
of a certain type for immediate consumption which will not be
praolonged afterwards, the cost of the excess production, with
relation to 1(i), must be equal to that of a wastage of the same

length.

146
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Or if for any reason (for example if it is wished to bring
forward the production because a high consumption is foreseen for
the following days or in order toc have the possibility of
combining more valueé of a(i) and thus producing less wastage) it
is wished’ to produce a certain guantity of items of .a product
which will not begin to be consumed for a certain number of days
afterwards, it will be sufficient to add this number to the index

k in the calculation of the functions h.

4,5.— Resolution by means of integer linear programming:

computational experience

Several tests were carried out with the models described.

As for the models with a fixed number of jumbos, some of the
tests were carried out with the algorithm of Gomory, with very
bad results (program not feasible in cases in which solutions
existed) becausé of numerical difficulties on adding the cutting

plans (except. in problems of a very small size).

The application of the package MILP8B/MILP87 was also tested;
the times were short in most cases, but increased rapidly whith J
and were sometimes excessively long for a daily industrial

application.

—

As for the relative cost model, the tests carriea out were not
sufficiéntly numerous to reach definitive conclusions.ﬂ It was
observed, however, that the time necessary for obtaining the
solution was usually'lower than that of resolving separately the
M-m+1 models corresponding to the different possible numbers of

jumbos cut, but greater than that needed to resolve them

17
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successively, using in each one the optimum value of the previous
one. However, for some sets of data there appeared severe

numerical problems which cause anomalies in the sclution.

S.— Heuristic algorithms

It 1is dﬁite easy to obtain a solution for J jumbos from the
solution for J-1 jumbos. It is sufficient to juxtapose on the
solution of J-1 Jumbos an additional jumbo, whose cutting
patterns can  be obtained through heuristics. This type of

algorithm has been called incremental heuristics.

Thus, from the optimum solution obtained with the ILP for J=m,
we can obtain a generally satisfactory solution fbr J=m+l, o.M,
Note also thét if the ILP is initialized with the value
corresponding to the solution achieved.thrbugh the incremental
heuristics, we can find out whether or not it is optimum, and 1if

not, a different solution will be reached.

However, there i1is still the difficulty of finding a solution
for J=m. This led to the design of a general heuristics, which
has elements in common with the incremental heuristics mentioned

above.

Both types of heuristics are described in the following

sections.

S.1l.- Incremental heuristics

As we have said, given a solution for J-1 jumbos this type of

heuristics constructs one for J jumbos.

18
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Incremental heuristics is based on quite an obvious
observation: If a good solution is available for J-1 jumbos,
another for J jumboé can be obtained easily by maintaining the
cutting pattern corresponding to the solution available for the
first J-1 jumbos and determining a good cutting pattern for the

additional jumbo J.

It 1is theréfore a case of resolving a problem.for a single
jumbo, with the values of the upper and lower bounds of
production of each model modified in order to take into account
the production corresponding to the first J-1 jumbos, n’' (i),
which will also have to intervene in the calculation of the cost
of stock. The lower bounds will be nil, because the solution for
J-1 1is possible, and the upper bounds will have a value which
will be called u’'(i). It is thus a case of optimizing the cutting_
of jgmbo Js having established the way of performing the
previous J-1 jumbos:

o1
(MIN] z = r + 2 h [i, x(i)+n" (i)-1(i)]
i=1

a(i)x(i) + r = A’
1

LU o B

i
with the x(i) integer and such that 0 £ x(i) £ u’'(i).

Which is a mathematical program equivalent to the following:

I I
[MIN] z = A'= £ a(i)x(i) + Z h [x(i)+n (i)-1(i)]
i=1 i=1 1 :

a(i)x(i) £ A
1

I

19




J

-

0 R S s [ s s [ s [ s s I s B sl B s

e
J

[
| S

|

[
H |
—_—

Or, making a(i)x(i)+ h [i, x(i)+n'(i)-1(i)] = h'[i, x(i)]1, to:
. I
[MAX] z = — A"+ £ h' ' [i,x(1i)]
i=1
I .
Z a(i)x(i) £ A’

i=1
This 1s similar to the knapsack problem, but with a non—-linear

objective function, which 'may be solved with a dynamic

programming procedure which is also similar to that described for

the KP:
X X
f (r) = max { f [rta(i)x(i)J+h"Ix(1)]3
i+l Osx(L)sminfu’ (i),q(1i)] i :

with f (A")=0 and f (r)=-o (for r#A).
5.2.- General heuristics

In the tests carried out, once a first possible solution had

bgen found by  integer linear programming, the incremental

" heuristics gave very good results and fulfilled the objective of

finding optimum or satisfactory solutions for any number of

jumbos in relatively short calculating times.

It is still, however, necessary to obtain a first possible
solution for the minimum number of jumbos, m. If this number 1is

relatively high, the calculating time of the ILP algorithm may be

long.

We therefore needed a procedure for obtaining satisfactory
possible solutions in short times without wusing any other:

solutions as a basis.

29
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The algorithm designed for this purpose, and in this context
known aé general heuristics, has points of contact with the
incremental heuristics described in the previous section. Having
established J number of'jumbos, the general heuristics consists
initially in J iterations in each of which is applied, basically,
the incremental heuristics, with the peculiarities described

belaow.

The main difference between the problem resolved by the
incremental heuristics and that correspondind to the general
heuristics 1is that in the first case we already know a possible
solution which is merely completed with one more jumbo,. whekeas
the general heuristics must construct a possible solution
(basically it is a question of obtaining at ieast 1(i) items of

each type).

'In order to force into the solution the items which are
missing in order to reach the minimum, the recursion equation of
the dynamic program is modified in the following way:

X X A
f (r) = m&x ‘ {f [r+a(i)x(i)]+h ' [x(i)1+h"Ix(i)1]2

i+1 O¢x(i)sminfu’ (1i),q9(1)] 1
where h"[x(1)]=0 when 1" (1)=0 and when 1’ (1)>0 :
max[1l (1),x(1i)] M T
hY"Ix(1) 1= = GLl ' (1)-k+1] a(i)
k=1

where G is a large value (in order to give a greater value in the
objective function to the items which are essential in order to
reach the minimum than to the others) and p and W’ are parameters

(which may be between O and 1) with which a greater or lesser

importance may be given to the "deficit" of items of each type or

21
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to their length.

In fact, the presence of these parameters defines a family of
heuristics and giveé many possibilities, according to the time
and calculating power available; for example, - we can
systematically try different values of the pair (p,p’) and retain
the best solution obtained, and even consider the value obtained
with the heuristics as a fuction of the two parameters and apply

a direct method of coptimization.

If we can only work with a single value of the parameters, a

reasonable choice is p=1 and p’'=0.

This dynamic programming pattern is thus applied to jumbos

1,2, 000,

In each of them it is‘calculated whether or nmot it is possible
to obtain é solution, and if so, whether.or not there 1is a
margin; i.e. whether the material corresponding to the jumbos as
yet not calculated is sufficient for cutting the essential items
not assigned to previous jumbos, and if so, whether it is only
for‘the essential ones or leaves a margin for some non-essential

ones.

If there is a maréin, once the dymnamic programming Has been
applied with the recursio; equation described above, for the
jumbo inAquestiDn the solution adopted ié that which optimizes
the part of the objective function which is notraffected by the
factor G‘(indeed, that which optimizes the cost of the wastage

plus that of the stock, and which, with the values which may

occur in practice, is also that which optimizes the wastage); the

22
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underlying reasoning is that what is decided for one jumbo canmnot
be recovered in later jumbos, and that any decision involving -
wastage and stock cests should be postponed as far as possible.

It will be said that in this case criterion 1 is applied.

But if there 1is no margin, it is advisable to cut the
essential items, and the optimization must therefore refer to the
whole objective function, including, consequently, the part
affected by factor G. It will then be said that criterion 2 is

applied.

In the application of the algorithm there will therefore be a
sequence of Jjumbos, perhaps empty, in which criterion 1 will be
applied, followed by another, perhaps empty, in which criterion 2

will be applied.

The algprithm may complete the J jumbos and obtain a solution.
But it maQ also occur that in an intermediate 4jumbo it is
detected fhat, with the assignétion of items corresponding to the
previdus jumbos, there is no solution. A possible cause is. that
there .has been too long a delay in the application of criterion

2, so 1t will go backwards, applying criterion 2 to the last

- jumbo in which criterion 1 had been applied and then maintaining

criterion 2 until the end or until it is detected that there is

no possible solution, in which case the procedure will be as we

have just described.

I3

The algorithm ends when it finds the solution or when it
cannot find it despite the application ofvcriterion 2 from the

first jumbo onwards.

23
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5.3.—- Results and conclusions

The heuristics we.have just described are fast and in all the
tests carried out have given very good results (in fact, in all
the cases 1n which the optimum was reached with integér linear
programming, the general heuristics also found the same solution

or an equivalent one).

Consequently, bearing in mindlthe times required by ILP, which
are often high and difficult to foresee, and the fact that ‘this
technigue also regquires the acquisition and coupling to the
system of a commercial software package, the calculation
procedure adopted was to apply the gemneral heuristics and the
incremental hguristics (starting from the solution corresponding
to a anber of jumbos one unit lower) for each of thé possible
numbers of Jjumbos (except for the minimum, in which only the

general heuristics is applied) and to retain the best of the two

solutions thus obtained.

The heuristics and the ILP can be combined in an exact
algorithm which consists in checking with the ILP whether or not
the solution obtained with the heuristics is optimum for each

possible value of J.
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