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MODELLING AND SOLVING THE PRODUCTION
RATE VARIATION PROBLEM
(PRVP)

Joaquin Bautista, Ramon Companys, Albert Corominas
Departament d’Organitzacié d’Empreses / ETSEIB
Universitat Politecnica de Catalunya

ABSTRACT

Several families of objective functions for the PRV problem are
formalized, relationships between them are established and it is
demonstrated that, in very general conditions, they can be optimized by
solving an assignment problem or a polynomially bounded sequence of
assignment problems.

1. Introduction

The sequencing of units in an assembly line in order to regularize the
consumption of components or the appearance of variants of the product is a
problem which in recent years has attracted growing attention in the literature.

The problem arises in a just-in-time (JIT) context, in which we consider the

production of U units of a product which exists in V  variants, u, units
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of which are to be produced (with E u=U ). The time required to obtain
i=1

each unit is constant, regardless of the variant, and the time the line needs to
adapt from one variant to another is negligible; therefore, if we take as a unit
of time the cycle time of the line, we can say that one product unit is produced
per time unit. '

The problem of regularizing the consumption of components was addressed by
Monden (1983) and subsequently by others including Miltenburg and Sinnamon
(1989), Miltenburg and Goldstein (1991), Bautista (1993) and Bautista,

Companys and Corominas (1993b).

Miltenburg (1989) formulated the problem of regularizing the appearance of
variants from the line, and this was later studied by Miltenburg, Steiner and
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Yeomans (1990), Kubiak and Sethi (1991), Inman and Bulfin (1991), Bautista,
Companys and Corominas (1992), Steiner and Yeomans (1993), Ding and
Cheng (1993a), Ding and Cheng (1993b), Bautista, Companys and Corominas
(1993a), Ng and Mak (1994) and Kubiak and Sethi (1994), among others.

For a detailed and thorough account we refer the reader to Kubiak (1993), an
excellent synthesis of the state of the art of the problem. In this work, Kubiak
proposes the term ORV (Output Rate Variation) to denote the component
consumption regularity problem, and the term PRV (Product Rate Variation) for
that concerning the regularity of appearance of variants of a product, and it is
shown that the PRV problem can be regarded as solved for a wide range of
objective functions.

However, one matter which in our opinion still requires further elaboration is
the choice of an appropriate objective function; at the very least, the fact that
apparently reasonable objective functions are numerous and varied makes it
necessary to resort to general solution procedures, in order to avoid having to
develop ad hoc procedures for each of the specific objective functions proposed.

The aim of the present paper is to model and solve the PRV problem. In
Section 2 we formalize several objective functions for the problem. In Section
3 we discuss optimization procedures and the conditions in which they may be
applied, at the same time establishing certain relationships between various
objective functions. Section 4 provides examples of the application of the
proposed optimization procedures and, finally, the conclusions are to be found
in Section 5.

2. The Product Rate Variation (PRV) problem: evaluation of sequences

As stated in Section 1, we are concerned with the sequencing of U  units,

of which u, belong to the variant i (1<i<V) ).

We can calculate the mean production rate of each variant thus:

A sequence can be described in a variety of ways.




One of these is by means of x, values (the number of units of variant i

sequenced up to and including instant % ); these values will only correspond

to a feasible sequence if:

14

R 0

and:

X, <X (for 1<i<V and 1<h<U-1) 2)

i,h+l

We shall call the latter condition the monotony condition; together with (1), it

implies that x,,  <x +1 .

Another way of describing the sequence is by means of ¢, values (the instant

in which unit k£ of variant. i is sequenced); the conditions to be fulfilled

in this case are that 1<z,<U , that all 1z, be different integers and that

k>k=1t,>t, .

These two ways of describing the sequences suggest several families of
objective functions to evaluate their regularity.

Firstly, we can consider the ideal output, .4 , of each variant i at each
instant A~ and adopt as a measure of regularity a function of the discrepancy

between these ideal productions and the actual productions, x, .

Let f(x,.,h) be a function of the discrepancy between the real x, production
of variant { atinstant 4 and the ideal production, where JSix,,h)=0 and

/(0,0)=0 . As a measure of the regularity of the sequence we can adopt:




ZS=E Efi(xih’h)

h=1 i=l

as in Miltenburg (1989), where:

2
£ G ["—k" ]
£ )=, -1 )
FACHOR
FACORIEIPIS

X.
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It is also possible, however, to adopt a function of the type:

zm = maxlShSU maXISiSV »f;(xilz’ h)

as do Steiner and Yeomans (1993), with:
fi(xih’h) = |xih _rihl

which coincides with one of the functions proposed by Miltenburg (1989) and

designated here as  f,*(x,,h) ).

The functions z, and z, only allow for discrepancies in integer instants

(h=1,...,U) , yetif we consider the function x (f)=x, h<t<h+l we can set

forth another type of objéotive function:

o=y [ Aln0.ds

On the other hand, the description of the sequence by means of 7, values

suggests other types of objective function, based on the discrepancies, &, ,

between 7, values and ideal or due dates d, (such that .dik<dik, Vk<k'),

4




with:
tik=dik +d ik

Such objective functions can be of the type:

=Y Y 28,

i=1l k=1
or alternatively:
C,=Max, ., Mmax, o<, 8 (8,
- Finally, it is also possible to adopt as a measure of regularity the dispersion of

time among units of the same variant, assuming fixed values for ¢, and

t, .. Vi ; dispersion can be evaluated, for example, by means of variance. This

141

type of objective function has not been considered to date in the literature, and
is the most difficult to deal with. It will not be referred to again in this paper.
3. The PRV problem: determination of optimal sequences

Let us first consider functions of the type:

ZS=E Efi(xih’h)

h=1 i=1

\4
Firstly, we observe that if we optimize Y f(x,.,n) for h=1,...,U (with
i=1 '

LV
Ex,.h =h ) and the solutions thus obtained satisfy the monotony condition, we

i=1

get a solution which minimizes z, .

v
Now, the minimization of Z fx,,h) in the conditions expressed is one of the
e

variants of the so-called apportionment problem, and simple optimization
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procedures are known for some objective functions.

One example of this is the LF (largest fractions) or Hamilton’s procedure (see

Appendix 1) for functions of the type |x,-rh|° (c=1) -- see Balinski and

Young (1982) -- and also for convex functions of the type fx,-r/h) ) (see

Appendix 1). In fact, it is the procedure used by Miltenburg (1989) in one of
the heuristics he proposes, although, as is demonstrated in that same paper, LF
generally fails to satisfy the monotony condition. The MF (major fractions) or

(X, ih)2

r,

[

Webster’s procedure, however, provides an optimal solution for the function

(see Balinski and Young (1982)); this procedure consists of apportioning units

i

successively to the variant for which the quotient is greatest, a,

al.+0.

being the number of units already apportiohed- (clearly, then, Webster’s
procedure satisfies the monotony condition).

For their part, Kubiak and Sethi (1991) and Kubiak (1993) establish equivalence
between the PRVP and an assignment problem for convex, nonnegative

fix,,m=fx,~rh) functions such that - 0)=0 .

If we make 7,=0 and ¢ ,=U+l1Vi we can write:

% G~

zs=E E»f;(xih’h) =E E E f;(k,h)=

i=l h=l i=l k=0 h=g;
Vv 4 U

Y HOm+Y Y Y [k -fk-1,)]=

h=1 i=1 k=1 h=g,

v oo
=KUV+Z E @,(,)

i=1 k=1

V -
=
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with:

K=Y Y04

i=1 h=1

and:




@, (=Y [filk,h)~f(k-1,m)]

h=t

The sequences are assignments of the units to the instants or positions, with the

condition 7, <t,,, Vi,1<sk<u~-1 . The value of the z; function for a

sequence can be obtained, apart from one constant, as the sum of the associated

¢ values. Thus, the minimization of z; can be regarded as an assignment

problem with the matrix of ¢’s and additional order restrictions between the

units of any given variant.

For an optimal assignment (with the matrix of ¢’ ) to satisfy this condition,
it must be ensured that:

<t'={@, )+, () <@, () +g, D]
“[¢,0-0,0)<¢,, O~ )]

& [kn~k-1,m1-Y [fik,h) ~fk-1,m] <

h=t h=t

<Y [ k+1,0) U m) =Y [+ 1,8 ~f (k)]
h=t

h=t!
-1 -1

Y [l (k=1,1 < X [flk+1,5) £k, )Tk

h=t h=t
-1 -1

T fk < %E F&-1,7)+fG+1,7)]

In short, it is necessary and sufficient that:

£ <%[ﬁ(k—1,h)+fi(k+1,h)] Vi,h 1<ksu -1

Furthermore, for this condition to be fulfilled, it is sufficient that f, be strictly

convex in relation to k . If the f, are convex but not strictly so, the

fulfilment of the condition cannot be guaranteed with <, although it can with
<, and if the solution of the assignment problem is not feasible, another can be
obtained which is feasible by swapping pieces of the same type (so, the solution




of the assignment problem can be taken directly as the solution of the PRV
problem if we only consider the type of piece in each position - see Kubiak and

Sethi (1994) - ). Therefore, if the f, are convex, an optimal assignment will
always exist which is an optimal sequence for z, . It is easy to check that

these convexity conditions are fulfilled for the f (1<j<4) functions proposed
in Miltenburg (1989).

Obviously, for the calculation of the matrix of the assignment problem, it can
be taken into consideration that:

k<t, <U-u+k

which avoids the necessity to calculate #,~1 -elements of the corresponding
TOW.

For some functions properties may exist that make it possible to reduce still
further the number of elements in the matrix - see Ng and Mak (1994) -; this
reduction can also be the result of imposing certain restrictions on the solution

(for example, requiring the discrepancy between the ideal value and the real one
to be bounded).

By introducing integer reference dates d, , it becomes apparent that these

results can be particularized and presented in the same way as in Kubiak and
Sethi (1991) and Kubiak (1993). In fact, we can write:

ZS(D ) =KUV+E Zl: (pik(dik)

i=l k=1
vV ooy

ZS(D =‘I{UV-*-X: Z q)ik(tik)
i=1 k=1

and, therefore:

D=2z D)+Y Y [0,,)~0,(d,)]

i=l k=1

and these differences ¢ ,(#,)-¢,(d,) are Kubiak and Sethi’s functions C,jt_k




U U
Ch =@, ~0,(d)=Y [f;(,n) fik-1,m]- Y, [fi(k,)~f(k-1,m)]

h=ty h=dy

an expression the value of which is:
0 for d, =z,

dy=1

Y [t fk-1,n)] for d,>1,

h=ty
=1

-Y [tk A k-1, for d,<t,

h=dy,

Now, as shown above, there is no need to bring reference dates d, into play.

Let us now consider objective functions of the type z, :

2=y [ flx,Ad=
= Jhlilﬁ[x,.(t),t]dr

i=1 h=l

If F, isa primitive of f; , then:

=y, Y [Flx®.1] =

i=l h=1

E [F; (xi,h—l ) _Fi(xi,h-1 = 1)]

h=1

Vv U
i=1

Therefore, objective functions of the type z, canbe assimilated into functions

of the type z, , with:

A h |
F o) =F 060, 1) <F s h=D) = * (0, de

and, moreover, the condition:




Ji(k,t)<%[ﬁ(k-1,t) +f (k+1,0]

is sufficient to guarantee the fulfilment of:

P < %[ﬁ(k-1 0+ Ge+1,0)]

Finally, with regard to objective functions based on output, let us consider those

of the type =z, , that is:

zm = maXi h f; (xih ’ h)
where f>0 and f(0,0)=f(x,U)=0

The aforementioned LF procedure also minimizes max,|x,-r/k| -- see
Balinski and Young (1982) -- and also max, fix,-r/) for any quasi-convex
f (see Appendix 1). It should be borne in mind, however, that the values
obtained by means of successive application of LF for #=1,...,U generally
fail to meet the monotony condition.

Let us assume that the f, functions have the property:
MaX, g0 Jik,h) =max[f(k Jh) Sk ]

that is, that they are quasi-convex. In practice, this assumption does not imply

any restriction, since f; functions are generally unimodal with respectto 7

with f(k,k/r)=0 .

Thus (with 7,=0 and ¢ , =U+1Vi):

i,ul
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z,=max, ., max,, ., fx,,n)=
=MAX, oy MAKoge, MAX, gr 1 Sike,h)=
max, .y MaXoge, max[fi(k,z,) :ﬁ(k>tz‘,k+1_1)] =
=max max, ., max[fi(k-1,t,-1)flk,t,)]=
=MaX, ey maxlskSui(f)z‘k(tik)

1<isv

where @ (O)=max[f(k-1,-1),f(k,0] .

Valid sequences are assignments of the units at instants or positions, with the

condition 7, <#,,,, Vi l<k<u,-1 . The value of the objective function which

corresponds to a sequence is the greatest of the associated § values, which

we are seeking to minimize. If we leave aside the order condition of the units
of each variant, this is a bottleneck assignment problem, which can be solved
by means of, for example, the procedure described in Woolsey and Swanson
(1975) and outlined below:

Step 1. Determine an assignment. If the value of this assignment is
e, end of algorithm.

Step 2. Determine, for the assignment found in Step 1, the greatest
value of those which correspond to the elements which

compose it (let this value be v ) and make all those

elements >v  equal to . Go to Step 1.

This procedure generates a sequence of solutions with strictly decreasing finite v,

values, the last of which, therefore, is optimal.

In Step 1, any algorithm can be used which is capable of finding an assignment
of finite value, assuming one exists (in particular, any algorithm which finds an
optimal assignment in the usual sense of the term, such as the Hungarian
algorithm or the auction algorithm).

Therefore, the procedure optimizes z  provided that the order condition

m

previously referred to is fulfilled. The assignment obtained in Step 1 must,
then, either satisfy it or lead to the deduction of another, of finite value, which

11




does so. For this to occur it is sufficient for the units in inverse order to be
interchangeable without any of them reaching a position with value . For this,

it is sufficient for ¢, () <v, to be satisfied for a nonempty interval

m,<t<M, Vk , and that m<m, ~ and M<M, VkVp>0 (see figure

below); these conditions are easy to check and are fulfilled for the functions
which are usually employed.

k+p | ‘ |

The idea of optimizing z 6 by solving a bottleneck assignment problem is

already present, though undeveloped, in Kubiak (1993), where it is shown that
this approach would render the binary search used in Steiner and Yeomans
(1993) unnecessary. In fact, in our opinion the use of the binary search is not
essential for Steiner and Yeomans’ procedure, in which the EDD-type algorithm
which they propose for finding a perfect match could be used, removing after
each iteration the edges with values not less than the best known solution.

These results generalize those in Steiner and Yeomans (1993). For the f,

functions adopted by these authors, and for all those with the form

fx,,mn=|x,-rh|° (cz1) , it can be ensured that the optimal value of z

z» ,is <1, thus guaranteeing that the order condition will be fulfilled for any
assignment, since all that is necessary is to consider, for each (i,k) pair, the
values of ¢  such that @, (r)<1 , and the intervals corresponding to two
successive values ( £ , k+1 ) do not have more than one common position.
A demonstration of the property z'<l can be found in Steiner and Yeomans

(1993).

12




This matter can be seen from another viewpoint, considering the formal
coincidence between the problem of determining a sequence of units and that

of the assignment of seats in representative bodies of size & (1<A<U) , n
states with populations proportional to r, , where E r,=1 . A procedure for

the assignation of seats will generate a valid sequence provided that the
monotony condition is substantiated, and Still (1980) shows that there is at least
one assignment which verifies the property known as the quota, i.e., such that

lrhl<x, <[rhl , where lrhl=[rh] (where [x] denotes the "largest integer"

<x, <
function) and frih]=—[—rih] ; in short, at least one sequence always exists in
which |x,-rh| <1 Vi,h (that is, z»<1 ), since for an integer rh ,

lrpl=lrhl and, therefore, x,=rh .

Objective functions of the type z, , z, and z, can also be expressed by

means of the variables 8, , given-integer reference dates d, .

As already stated, we can also consider objective functions of the type ¢, and

¢ , with integer or real reference dates d,, .

In order to optimize these functions we can resort to procedures such as those

proposed for functions of the type 2z, and z always assuming the

m ?

verification of the conditions guaranteeing that the optimal assignations are
ordered (or that from one optimal assignment another, likewise optimal, is

easily obtainable which is ordered): it is sufficient for the g, functions to be

convex (see Appendix 2).

Simple relationships exist between some functions of the types z, , z, and

Cs -
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Let us assume:
Vv U

Z§=; hzl: (=1 )
v U 1

Z;:E E F(xih—rih)z

i=l h=l 7;

v U
z; =§ L [y, -rfdr

2_ Z 1 v —rP%d
z —ZI: 7[() [x, () ~rf1°dt

vV 4

1_ 2
CS"E E 6ik
i=1 k=1
V%

C%E E 79

i=l k=1

The following is fulfilled:

3U2+UXV: .
i=1 ,

v
ZII =Z51’ +E r z‘E L™ 3
=

k=1

=20+ —

3

k-0.5 |
ro

14

and, with d; =

Ul 1
Z%Q*ﬁ[z ;‘4]

i=1

U 1
21, U L
“ S+12,-=1 r,

1
z}=C§,+—1-2-UV

14




k-0.5

r,

1

and, with dy= +0.5 :

Therefore, with dates d;, we can form the following groups of functions (the

functions in each group differing by one constant and the optimization of one
being equivalent to that of the other):

C={z3.2,03} C={g]. (g}

and, with dates d; :

C3 = {Z ; s Cz//}

Now, {; is optimized with the EDD (earliest due date) rule -- see Inman and

Bulfin (1991) -- which coincides, with the-dates d; , with the MF or

ik ?
Webster’s procedure. Thus, EDD also optimizes (for dates d; ) z2 and

274 U:

z? . The EDD rule also optimizes the function Y Y |8,| -- Garey, Tarjan

i=1 k=1

and Wilfong (1988) -- as shown in Inman and Bulfin’s paper. In fact (see
Appendix 3), EDD minimizes any function with the form:

vV ooy

C=Y, ) g(8,)

i=1 k=1

(in which g is convex, nonnegative and such that g(0)=0 ) or the form:

Cm=maXISiSV I‘nax‘lskﬂli g (6ik)
(in which g is quasi-convex, nonnegative and such that g(0)=0 ).

15




For example, EDD minimizes functions of the type:

20)=Y Y [A87+(1-2)8]]

i=l k=1

in which O<A<l , &}=max(0,8,) and &;=max(0,-8,) , which can alsobe

seen as follows:

2)=Y ¥ [A(3:-87)+5;]

i=1 k=1

vV 4 V 4 vV oy

Vo
However, Y, Y (8;-3)=Y % 8,=) Y #.-Y Y d;=a , where « is

i=l k=1 i=l k=1 i=l k=1 i=l k=l
constant, given the dates d, , and, in particular, a=g for the dates d;, .

Therefore:

vV Y

C3(A)=Aa +E E 8

i=1 k=l

and all functions of the family ¢>(A) differ by only one constant, which
means that they can all be optimized by following the EDD procedure.

4. Examples

For the functions studied, we have reached the conclusion that the solution of
an assignment problem or a polynomially bound sequence of assignment
problems makes it possible to determine the optimal sequence.

We shall illustrate the application of these procedures with some examples.

Let us first take that presented in Kubiak (1993):
V=3,U=10; u,=2,u,=3,u,=5

for which, and for z; , Kubiak gives the following two optimal (inverse)

16




solutions:

These solutions are also reached by applying LF (in this example the monotony

~condition is verified) and EDD with dates d; (tantamount to applying MF).

Therefore, we find these optimal solutions for the following objective functions,
among others:

2 ‘E E G, )= 23 (Kubiak 1993, LF, assignment) and, therefore,

i=1 h=l

for {5 [ gg]

Vv U

Z E |%,,=1, h] (LF, assignment)

i=l h=1

2
Y.y [%‘l -7 i] =0.552 (LF, assignment)

VU |
33 T‘k—ri =2.454 (LF, assignment)

i=1 A=1

max, ..., max -rh|=0.5 (LF, assignment)

1=isv 1=hsU |xih

EZ 52 72 (EDD) and, therefore, for z2 (=2§] and

i=1 k=1
i)

17
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>3 18,/=5 (EDD)

i=1 k=1

max, ., Max, g, |8,|=1 (EDD)

For Cz, optimization is achieved by solving an assignment problem, with the

matrix in Table 1 (in which the values are multiplied by 300).

135 15 15 135 390 735 1215} 1815 2535 -

1815 1215 735 390 135 15 15 135 390

40 10 160 490 1000 1690 2560| 3610 - -

- 810 360 90 0 90 360 810 1440 -

- -| 2560§ 1690 1000 490 160 10 40 250

0 150 6001 1350| 2400{ 3750 - - - -

- 150 0 150 600 1350 2400 - - -

- - 600 150 0 150 600 1350 - -

- - - 1350]. 600 150 0 150 600 -

- - - -| 2400 1350] 600| 150 of 150
Table 1

The optimal solution is:

3-2-3-1-3-2-3-1-2-3

440 44

with C 30030 ° ; this solution is also optimal for z; , the corresponding
value for which is 119 .
. 30

Finally, let us consider the optimization of max ., max . |x,-7/| for the

example presented in Steiner and Yeomans (1993):

18




V=5,U=20; u =7,u,=6,u,=4,u,=2,u.=1

for which the authors give the solution:

1-2-3-1-2-4-1-2-3-1-5-2-1-3-2-1-4-2-3-1
the corresponding value for which is 0.65 .

For this example, the values obtained through successive application of LF
satisfy the monotony condition, and we obtain, among others, the optimal
solution;

1-2-3-1-2-4-1-3-2-1-5-2-3-1-2-1-4-3-2-1

An optimal solution can also be attained by solving the bottleneck assignment
problem, with the matrix in Table 2 (in which only values <1 have been
included).

By solving the assignment problem, the following solution is obtained:
1-2-3-4-1-2-1-3-2-1-5-2-3-1-2-1-4-3-1-2

in which the greatest element has the value 0.70 ; by removing from the table
elements with values >0.70 and solving the assignment problem we obtain:

1-2-3-4-1-2-1-3-2-1-5-2-3-1-2-1-4-3-2-1

in which the greatest element has the value 0.65 and is therefore optimal.

5. Conclusions

In this paper several types of objective function are proposed to evaluate the
regularity of a sequence in the PRV problem, and it is shown that its
optimization can be achieved, in very general conditions, by means of the
solution of an assignment problem or a polynomially bound sequence of
assignment problems. Simple relationships are also established between specific
objective functions of various types and their equivalence is shown in some
cases.

The results obtained constitute, in one respect, a generalization and a new

presentation of those obtained by Kubiak and Sethi (1991), allowing the
omission of the previous calculation of reference dates, and also a

19




generalization of those obtained by Steiner and Yeomans (1993). As a whole,
they confirm the observation made by Kubiak (1993): the PRVP can be
regarded as a well solved problem.

ilk|m M‘I Values
1] 1l 1| 3{}-65]35].70

6l -95{.60].40|.75

9|90 .55.45] .80

O | O\ | W

12| -85|-50{.50] .85

12| 1511 -80] 45| .55[ .90

151 18]|-75|-40] 60| .95

—_
N PN BN

181 20|70 35 65

.40|.60] .90

p—
p—
SN
)
S

.501.501.80

S
~J
[e ]
o

7| 10|}-90] 60| 40} .70

14| 17|} -80{.50{ .50} .80

171 20|90} .60[.40}{ .70

11 \14‘| 7040 .60 :90

AN | W [\

.801.60(.40}.60].80

5| 10]l-80}.60|.40{.60|.80

11} 151]-80].60].40{.60}.80

S W N

161 20| -80].60|.40].60].80

1] 101]-90|-80].70] .60{.50].50{ .60(.70|.80 | .90

2| 11| 20]]-90|-80{.70].60].50].50].60|.70| .80 .90

L B O N N w w w w NN [\ [\ W]
ot
—
W

1| 1] 201]-95|-90].85] .80|.75|.70]{ .65 .60| .55 .50

.50|.55].60].65}.70].75]1.80| .85]|.90j .95

Table 2
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Appendix 1

) 14
The LF procedure minimizes E Sx,~rh) (with convex f ) and
i=1
max, fix,-rh) ) (with quasi-convex f ), x, being nonnegative integers

v
and such that Y x,=h
i=1

We can write:
rih =Ii +F :

where I, is a nonnegative integer and O<F,<1 .

We wish to determine certain x>0 which are integers and such that

v
N x=h .

i=1
The LF or Hamilton’s procedure consists of:
- first making x,=I Vi ;

- ordering the various F, from greater to lesser and adding a unit to

14
each of the x, which correspond to the first A-Y 1, in the resulting

i=1

arrangement.

It is shown below that, with nonnegative f such that A0)=0 :

14
LF minimizes Y fix,-r/4) for any convex f ;

i=1
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LF minimizes min ., fix,-r}) for any quasi-convex f .

Let a convex function f and four values (a,b,c,d) be such that:

a<b <d
a<c <d
with = b=a+e , c¢=d-e& where, clearly, O<e<d-a . The following is
verified:
Proposition: f(b)+f(c)<fla) +f(d)
In fact:
b=d—a—8a+ e 4
d-a d-a
o=t a+d—a—8 d
d-a d-a

Thus, for the convexity of f :

d-a-g £
JORSBIOMSIO

£ d-a-e
s 52+ oA

and, therefore:

J)+Re)sfla)+Ad)

It will be shown below that there always exists an optimal solution such that

x,e{l,[+1} Vi , that is, such that x=[+y, with ye{0,1} .

Let us assume that x=[+P , with P22 ; then, given that Ei x,=h ,
x |x=[-P', with P’>0 . However, if we make x=[+P-1 and

xj=1j—P’ +1 , then we find, by virtue of the proposition, that:

24




AP-1-F)+f(1-P'-F)<f(P-F)+f(-P'-F)

and that the solution is therefore either not optimal or there is another with the

same value with x=[+P-1 and xj=Ij—P’ +1 . Analogously, it is demonstrated
that if in a solution there is a x,=I-P’ with "P’>1 , the solution is not

optimal or there is another with the same value with x,=[-P’+1 .

Therefore, the problem:
14
[MIN]z=Y " fix,-r/h)
i=1

4
E x,=h
i=1

x,20 and integer Vi
is equivalent to:
\4
[MIN)z=} . fy,~F)
vV = Vv
Y v=h-3} 1,
i i=l

i=1 =
y,€{0,1} Vi

and aiso to:
[MIN1z=Y, [Ry,~F)-f(-F)]1+Y_R-F)
i=1 i=1
v 1%
Z y,=h _E I

i=1 i=1
y,€{0,1} Vi

Thus, since:
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F>F, = [fil-F)-f-F) <f1-F)--F)]

an optimal solution is found by giving the value 1 to the y, which correspond

14
to the first A-Y I, functions in a non-increasing arrangement of F, , that

i=1

is, by applying the LF procedure.

Let us now consider the minimization of min __, fx,-r4) for a quasi-convex
f , that is, such that:

{fa<b<ct = {Ab)<max[fa) )}

Also in this case, there always exists an optimal solution such that

xe{l,[+1} Vi , ie., such that x,=I[+y, with ye{0,1} .

Let us assume that x,=I+P , with- P>2 ; then~ 3x |x=[-P" , with P'>0 .
However, if we make x=[+P-1 and xj=Ij—P’+1 , then we find, for the

quasi-convexity of f , that:

f(1-P'-F)smax[f{-P'+F) filP-F)]
AP-1-F)smax{f{~P"+F) fiP-F)]

and consequently:

max[(1-P'-F) fiP-1-F)]<max[f{-P'+F) AP-F)]
and therefore the solution is not optimal or there is another with the same value
with x,=[+P-1 and x=[-P’+1 . Analogously, it is demonstrated that if in

a solution there isa x,=I.-P/ with P’>1 , the solution is not optimal or there

is another with the same value with x,=I-P'+1 .

26




In short, x=I+y, ,with y,&{0,1} Vi . Thus, if we have F>F, and y,=0
and y=1 , the solution with y,=1 and y=0 isnot worse than the previous

one, since, for the quasi-convexity of f :

max[A{-F) il -F)]<max[A~F) {1 -F)]
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Appendix 2

An optimal assignment exists which satisfies the monotony

condition for convex g(5,)=g(r,-d,) functions

The aim is to demonstrate that if we have a solution with 7, >z, for k<k’

(and, therefore, d,<d, ), a no worse solution can be obtained by

interchanging the positions of the two units, i.e.:

g i(tik" _dik) +§ i(t z‘k—dik’) <8 i<tz‘k’ —dik/) +§ i(t ik _dik)

and this relationship is fulfilled by virtue of the proposition in Appendix 1. In
fact, we can write:

d'k/=d' +&

i ik
=l

with €>0 and 1n>0 , and therefore the former inequality can be written:

8t ~d, ) +8 (1, ~d,~2)<g (t,~d,—n ~€) +g(,~d,)
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Appendix 3

Vo 4
EDD minimizes (=Y Y ¢, and { =max ., max_ g(3,) for any

i=1 k=1

convex or quasi-convex g respectively
Let us assume that g is nonnegative and such that g(0)=0 .

Let us first consider functions of the type {, . We shall demonstrate that if we

have a solution with d<d’ and ¢>t’ the solution obtained by means of

interchanging the content of these two positions is not worse than the initial
solution. '

In fact, we can write:

d'=d+e
t=t'+n

with >0 and n>0 and, therefore, the inequality:
gt-d")+g(t'-d)<g(t’-d’y+g(t-d)

is equivalent to:

g(t-d-e)+g(t-d-n)<g(t-d-n-2)+g(t-d)
which is fulfilled by virtue of the proposition in Appendix 1.

As regards functions of the type ¢ , with a reasoning analogous to that

expounded previously, the aim is to demonstrate that:

max[g(t-d"),g(t'-d)]<max[g(t'-d’),g(t~d)]

which is equivalent to:

max[g(t-d-¢),g(t-d-n))<max[g(t-d-n -2),8(t-d)]

which is fulfilled for the quasi-convexity of g .
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