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A NOTE ON ONE-PROCESSOR SCHEDULING WITH EQUAL TASK
LENGTHS AND WITH NONSYMMETRIC, NONLINEAR EARLINESS
AND TARDINESS PENALTIES

Joaquin Bautista, Ramon Companys, Albert Corominas
Department d’Organitzacié d’Empreses / ETSEIB
Universitat Politécnica de Catalunya

ABSTRACT ’

We consider the problem of determining an optimal schedule for a
number of tasks of equal length to be processed nonpreemptively on one
single machine; the objective is to minimize the sum for all the tasks of
a convex function of the discrepancy between their completion times and
the respective due dates. It is shown that an optimal solution always
exists in which the tasks are processed in order of EDDs (earliest due
dates), and some solution procedures are proposed, for one of which we
present a synthesis of the computational experience obtained.

1. Introduction

The problem dealt with in this note is the following: there are n tasks of

equal length (thereby allowing us, without forgoing generality, to consider task
length as being equal to one time unit) to be processed nonpreemptively on a
single processor which can only carry out one task at a time; a schedule is an

assignment to each task of a completion time, ¢, , such that no two tasks
overlap in their execution; each task has an associated due date d, and, given
a schedule, a corresponding earliness, equal to max(0,d.-c) , and tardiness,
equal to max(0,c,~d,) . As a notational convenience whe shall assume that
d<d.,, ;whe shall also assume that all the tasks are available at time 0 (or that

their release dates, 7, , fullfil the condition r<i-1 ). Given an earliness




penalty function g and a tardiness penalty function 4 , both nonnegative,

convex and such that g(0)=h(0)=0 , we wish to determine a schedule which

minimizes the total penalty obtained by summing all the individual earliness and
tardiness penalties.

~ Without loss of generality, we shall consider a convex, nonnegative function

f (of the difference &,=c,~d, ) such that f0)=0 . As will be seen

subsequently, the only essential feature for optimization is that it be convex,
although any appropriate function for the sequencing under consideration here
must clearly have the other two properties. In short, our task is to minimize the
function:

2=y f(8)=Yf(c,~d)
i=1 i=1

This problem is a particular case of that of scheduling with a single processor,
on the subject of which several works have been published. In Garey, Tarjan
and Wilfong (1988) it is dealt with in full with symmetric and linear earliness
and tardiness penalties; the authors observe that researchers have come to
consider scheduling problems in which both tardiness and earliness are
~ penalized, in contrast with the previous approach of penalizing only tardiness
(which amounted, in fact, to judging it no more desirable to finish a task on its
due date than at any other previous time). The treatment of earliness alongside
tardiness as a magnitude with an associated penalty is in keeping with just-in-
time policies, which probably accounts for its acceptance within models.
Nevertheless, equal importance for earliness and tardiness is seldom justified,
just as their contribution to the objective function will rarely be linear. Positive
earliness generates storage costs (which can be considered proportional to
earliness), but the repercussions of positive tardiness are entirely different, and
not necessarily proportional to its value. Thus, in practice the appropriate
function f for modelling the objective will tend to be neither symmetric nor
linear.

In the paper mentioned above, Garey, Tarjan and Wilfong consider the
symmetric case in which task lengths are equal. This case is of particular
interest, since it has many features in common with the problem of sequencing
units of variants of a product on an assembly line with the aim of regularizing
the appearance of variants of the product. This problem, which Kubiak (1993)
named the PRV (Product Rate Variation) problem, was introduced into the
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literature by Miltenburg (1989) as a development of Monden’s precursory work
(1983), and has been researched by several authors. The original approach is
to measure regularity in terms of the discrepancies between real and ideal
production totals, and the objective is to minimize a given function of these
discrepancies, such as the sum of their squares. As a route towards the optimum
of this function (in other words, a heuristic procedure), Inman and Bulfin
(1991) propose secking an optimal solution to the problem of minimizing the
sum of the squares of the differences between the units’ completion times and
ideal dates determined to that effect. Inman and Bulfin then note that this
optimization problem coincides with the scheduling problem with a single
processor and equal task lengths; they solve it by using the EDD rule, that is,
by putting the units in order of first to last due dates. In fact, for the case of

equal task lengths and the objective of minimizing the sum of the absolute 8,

values, it is shown in Garey, Tarjan and Wilfong (1988) that an optimal
solution responding to the EDD rule always exists. In Inman and Bulfin (1991)
we see that the same interchange argument used in Garey, Tarjan and Wilfong
(1988) is valid for the sum-of-the-squares function.

In this note we shall demonstrate (in point 2) that this argument is also valid for

any.function f with the properties specified above. In point 3 we discuss the

procedures for determining an optimum schedule with a set EDD order, and
present a computational experience. Finally, point 4 offers some comments on
the minimax problem and some very brief conclusions.

2. EDD minimizes Y f(3)
i=1

Let a convex function f and four values (p,q,r,s) be such that

p<q <s
p<r <s

with g=p+e and r=s-e , where, of course, O<e<s—p . We first show that
the following proposition is true:




Proposition: f(g)+/(r)<f(p) +/(s)
Indeed,
_Sp-e_ . &
S=p §—p
£ . Sp-e
§=p §=p

q

r:

So, for the convexity of f :

F@<ZPEfpy+ E_£(s)
S—p s=p
FR) <2 f)+ZPZEA(s)
§-p §=p

and, therefore:

F@+ (M) <f(p)+/(s)

We shall demonstrate-that if we have a solution. with dl.sdj and ¢, >¢, , the

solution obtained by permutation of the two tasks is not. worse than the initial
solution (permutation is always possible, since the two tasks are of equal length;
moreover, this permutation does not alter the completion times of the other

tasks).

In fact, we can write:

d.=d +&
J 1
€;=¢,t

with >0 and n>0 and, therefore, the inequality
fle,=d)+f(c,-d)<f(c,~d)+f(c,~d)

is equivalent to:




Fle,-d=2)+f(c,~d~n)sf(c,~d,-n ~2) +f(c,~d)

which is fulfilled by virtue of the above proposition.

3. Obtaining an optimal schedule

Once it has been shown that an optimal solution always exists in which the tasks
are arranged in accordance with the EDD rule, it is relatively simple to
determine an optimal schedule.

On the one hand, there is the possibility of adapting the algorithm proposed in
Garey, Tarjan and Wilfong (1988) for reaching an optimal solution when the
order of the tasks is set. The authors present a detailed description of their
algorithm for linear and symmetric penalties, and also state several
generalizations. In the problem with which we are concerned, the adapted
algorithm would have to include a procedure for the optimization of nonlinear
functions of a variable.

Alternatively, the problem can be modelled by means of mathematical
programming:

[MIN)z=Y" &)
i=1

c+lzc, l<izn-1
¢,=d+d, l<i<n
c,z21

We are dealing, then, with a nonlinear program with a convex objective
function and linear restrictions which can be solved with any standard algorithm
(of course, we can use the starting times instead of the completion times).

In practice, we will frequently use different expressions to define the penalties
associated with earliness and tardiness, which makes it convenient to use the
following formulation:




[MINIz=Y" [F(87)+/*(3})]
i=]
¢ +l<c,, l<i<n-1

c=d+3'-d; l<izn

i .

c,21; 87,8, >0Vi
With this model, we performed a computational experience consisting of three
experiments.
Experiment 1
The penalties associated with earliness and tardiness were defined as:

[(87)=a787; f(8)=a"+B(8"y

For the parameters of these functions, the eight sets of values shown in table
1 were used.

S1 S2 S3 S4 S5 S6 S7 S8
_ 0 1 2 1 1 1 1 1
o
. 1 2 1 1 1 1 2 2
o
0 0 0 0 1 1 1 1
B
0 0 0 0 2 4 2 4
p
Table 1

The instances proposed give five values for the number of tasks to be

-programmed ( n ): 20, 40, 60, 80 and 100; and the d, values were obtained

by means of a succession of numbers x; l<j<n) generated by simulation as




and 2), by performing:

1

d=Y x
J
j=1

This yielded a total of 120 instances (grouped in 15 blocks, defined in terms of n

and A , each of them consisting of eight instances associated with the sets of

values for the parameters), modelled in the language GAMS and solved with the
- optimizers BDMLP (linear functions) and MINOS (nonlinear functions) on a 66
Mz PC-486.

The total times required for solving each block of problems are shown in table
2.

n=20 n=40 n=60 n=80 n=100
2205 50 s 54 s 58 s 62 s 65 s
121.0 50 s 54 s 58 s 6ls 65 s
1220 50 s 53s 56 s 59 s 61 s
Table 2

These times include file management, compilation of the model and the solution
of the problems.

The time employed on each instance (excluding file management and
compilation) varied between 2.9 and 6.06 s respectively for an instance with

n=20 and a linear function and a for an instance with »n=100 and a

nonlinear function.

The data and the solution for one of the instances are shown in figure 1.
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Figure 1

Data and solution for one of the instances of experiment 1
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Experiment 2

The same penalty function was used, but with only the first four sets of values
for the parameters (the linear functions).

The values set for n were 50, 100, 150, 200 and 250, and the d, values

were obtained in the same way as in the previous experiment.

This therefore gave a total of 60 instances, grouped as before in 15 blocks, the
solution of which required the times that are displayed in table 3.

n=50 n=100 n=150 n=200 n=250
120.5 28 s 32s 39s 46 s S5
421.0 28 s 32s 34 s 38 s 48 s
1220 28 s 30 s 32 s 36 s 39 s
Table 3

The time for each model varied between 3.62 and 7.03 s for instances with

n=20 and n=250 respectively.

Experiment 3

In this experiment we set a common due date for all the tasks (d;=d, Vi) . It
consisted of a total of 160 instances grouped in 5 blocks. Each block, defined
in terms of n(®=20,40,60,80,100) , contains 32 instances, formed by

combining the eight sets of values for the parameters and four values for d, .




Table 4 features the four vélues for d, adopted for each value of » and

table 5 contains the overall times required to solve each block.

=20 10 20 50 100
=20 20 40 100 200
=20 30 60 150 300
n=20 50 80 200 400
=20 50 100 250 500 |

Table 4

| n=20 n=20 n=20 n=20 n=20

179 s 193 s 211 s 227 s 242 s
Table S

The time for each model varied between 3.13 and 6.58 s respectively for

instances with #=20 and a linear function and »n=100 and a nonlinear

function.

4. Remarks and conclusions

If we regard the problem hitherto discussed as being of the minisum type, when

the objective function we are seeking to minimize takes the form max; f(3) ,

we can state that the problem is of the minimax type. Minimax problems with
an equal task length are -- see Garey, Tarjan and Wilfong (1988) -- a particular
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case of the problem studied in Sidney (1977) and Lakshminarayan et al. (1978),
for which an optimal solution always exists that follows the EDD rule (in fact,
this is easily seen directly, by applying the same exchange argument as for the
minisum case, except that in the minimax case it is sufficient for the function

f to be quasi-convex).

For minisum problems with equal lengths for all tasks, this note generalizes, for
any convex function of the discrepancies between completion times and due
dates, the results obtained by Garey, Tarjan and Wilfong (1988), according to
which (for the absolute-value function of the discrepancies) there is always an
optimal solution which follows the EDD rule. This enables us to solve the
problem of finding an optimal schedule through standard mathematical
programming, and the computational experience obtained suggests that this
approach is practical for problems on an industrial scale.

The proposed approach also enables us to solve the case in which we have for
the completion time of each task a window [a,b] (a,<b) whitin which the
task can shift whitout penalty -- the earliness and the tardiness are, then,
respectively equal to max(0,a,-¢) and max(0,c,-b) --; of course, we also

can use the model for finding ‘an optimum - schedule when the tasks must be
executed in a fixed order.
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