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SOLVING THE APPORTIONMENT PROBLEM THROUGH THE
OPTIMIZATION OF DISCREPANCY FUNCTIONS

Joaquin Bautista, Ramon Companys, Albert Corominas
Departament d’Organitzacié d’Empreses (ETSEIB)
Universitat Politécnica de Catalunya, Barcelona, Spain

ABSTRACT

One of the ways to solve the classical apportionment problem (which has been studied chiefly in relation to
the apportionment of seats in a chamber of representatives) is the optimization of a discrepancy function;
although this approach seems very natural, it has been hardly used. In this paper we propose a more general
formalization of the problem and an optimization procedure for a very broad class of discrepancy functions,
study the properties of the procedure and present some applications of it.
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1. Intreduction

The following constitutes what can be called the general apportionment problem (GApP): we have

h indivisible units of a commodity (% being a positive integer) which are to be distributed

be_tween the m elements of a set M such that the number of units of the commodity agportioned

to each element of M (the nonnegative integers x, — with 7=1,...,m — such thatz'xl:h )is
i=1

as close as possible to some preset values, g,, (i=1,....m).

The g, may be independent of / (in which case they can be designated asq;) or not; in the latter
case they can be regarded as the product of a coefficient, 7, , by 4. g, =r,A. One particularly
interesting case is that in which the coefficients r,, do not depend on 4 (in which case they can
be represented as r;) and fulfil: i
r20Vi and Y, 7=1
i=1

This case occurs, for example, when the elements of M have associated values of p,>0
m

(i=1,....m),, withz p,=P,, and we wish to distribute /2 proportionally to these values. Then,
i=1

) p;
_=rh with r,=—
qzh i i P

and the problem is that known classically as the apportionment problem (ApP), in which the ¢,,




are usually called quotas.

The nature of the commodity to be distributed and that of the elements of the set M can be very
diverse. Some examples would be the allocation of teaching staff in university departments,
schools in city districts, computers in departments of a company or government body, or copies
of a book in libraries, or even the distribution of the planned units of a family of products between
the specific products which it comprises. The problem has been studied primarily, however, in
relation to the apportionment of seats in a chamber of representatives to electoral constituencies
(states in the case of the United States Congress) proportionally to their population, or to political

options (parties or coalitions) standing at elections proportionally to votes obtained.

In Section 2 of this paper we present a synthesis of the classical approaches to the apportionment
problem in its application to the apportionment of seats; in Section 3 we define procedures (which
we call generalized divisor methods or GDMs) which optimize a family of general discrepancy
functions, for the GApP, itself defined through very general properties, and we also establish a
method for determining which discrepancy functions are optimized by any given GDM, including
the classical divisor methods (DMs); in Section 4 we present some applications of the procedures

given in Section 3; and finally, Section 5 includes some brief conclusions.

2. The apportionment of seats in a chamber of representatives

In relation to the apportionment of seats, the apportionment problem has been dealt with most
thoroughly in Balinski & Young (1982). Apart from this cardinal work, many others have been
published on the subject, among them Leyvraz (1977), Rovira (1977), Lucas (1978), Still (1979),
Balinski & Young (1983), Balinski & Demange (1989), Athanasopoulos (1993) and Ernst (1994).

In this section we present a synthesis of the various ways in which the problem has been dealt
with, and a brief discussion leading on to the use of discrepancy functions, which constitute the

basis of the developments contained within this paper.

As regards the apportionment of seats, the first procedures to be formalized date from the end of
the 18th century (Hamilton and Jefferson); since then, many other proposals have been formulated

which often (apparently unknown to the authors) coincided with existing procedures, albeit
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sometimes with a different presentation. Given the importance of the result, the approach to the
problem has always been greatly conditioned by the point of view and even the interests of those

who have attempted to solve it, and by the peculiarities involved in the apportionment of seats.

Nowadays it seems very natural to us to consider the apportionment problem as being an
optimization problem in which the aim is to minimize a discrepancy function between x; and
q,,,with the constraints mentioned above. Historically, however, the procedures adopted were
based on some simple rule for obtaining x, from ¢, without explicitly posing any discrepancy

function, even though one or more were sometimes optimized by the procedure.

Up to this point we have used the term "procedure" without defining it, but we must now be more
specific. By "procedure" we understand an algorithm which uses the data to provide a single
solution to the problem, and by "method"” we mean an algorithm which, in general, provides a
more or less numerous, but not empty, set of solutions. In practice, the fact of a method not
determining a single solution indicates a tie; therefore, we can use one method to define several

procedures, according to the rule for deciding in the event of a tie.

Tn Hamilton's method (which is given many other names, one of the most frequently used of which
is the largest fractions or LF method) each state is apportioned the integral part of g,, and the
remaining seats, one by one, according to the order of the fractional parts of the same g, (from
larger to smaller). In divisor methods (DMs) a divisor, A, is sought such that the quotients %
rounded with a specific rule in each method (which characterizes that method), addup toh (4
can be interpreted as the number of inhabitants per seat, which ideally, according to the "one man,
one vote" principle, should be the same for all states). For example, in Jefferson's method x; is
the largest integer s& (the quotient is truncated), whereas in Webster's it is the largest integer

s%+0.5 (the quotient is rounded in the usual way).

The determination of A is not difficult but does involve a process of trial and error and,
moreover, on the whole there is no single value for this parameter. In practice, DMs are applied
by using iterative algorithms for the successive apportionment of seats: divisors, d(a), with a>0
and integer, are defined such that a<d(a)<a+1 and d(a)<d(a+1), a, being the number of seats
apportioned to the state 7 after a certain number of iterations; at each iteration a seat is awarded

(or the quotient Tin ,
d(a)

i i

b;

to one of the states to which the greatest value of the quotient




given the proportionality between p, and g;) corresponds. Similarly, the quotients . ;lq(’—h)-
a
(0<a<h) can be calculated and the seats apportioned according to the order of these quotients

(from larger to smaller).

Clearly, then, DMs possess the property that solutions always exist for which x(h+1)2x(h) Vi
(or house monotonicity, property H), which is not the case, for example, with the LF or

Hamilton's method.

Of the infinite DMs, the five which are considered as being traditional or historical are those

presented and defined in Table 1.

METHOD Adams Dean Hill Webster Jefferson
1
d(a) a a(a+1) Ja@+D) a+— a+l
a+l
2
Table 1

Traditionally, once a method was defined, the properties it possessed had been studied. Later on,
a different approach was adopted: to postulate properties and find methods possessing them,; for
example, Still (1979) postulates that a method should be H and Q (Q or quota being such that
|q,,l<x,<[q,], with | q,,|=[q,,] and [q,,1=-[-4,,], [] being the integral part of y) and constructs
a family of methods with these properties.

Huntington (1928) was the first to introduce the concept of optimization in the approach to the
apportionment problem. Once an inequality measurement had been defined between two states,
the aim was to find a locally optimal apportionment of seats, i.e., one in which no exchange of
seats between states exists which would simultaneously improve all the inequality measurements
between the various pairs. Naturally, the method to use in order to find the solution depends on
how the inequality measurement is defined; it is notable that those used by Huntington led

precisely to the five traditional DMs in Table 1, all of which were already known at that time.




The optimization of a general discrepancy function has never, then, been a starting point for a
definition of the typically applied methods. Nevertheless, in Athanasopoulos (1993) the possibility
is mentioned and several functions are suggested, and in Ernst (1994) the ability of some methods
to optimize certain functions is one of the arguments used in the very interesting legal debate that
is set forth. As a rule, the fact of a method optimizing a discrepancy function appears as a

property; thus, for example, the following has been proved:

m
Proposition 1. Hamilton minimizes Z f(x,~q,), with f convex and such that f(0)=0 (Bautista,

Companys & Corominas, 1994).

2
Propo ltlon 2. Webster minimizes Z 4,
quh _'—1 (Lucas, 1978, p. 379, Bahnskl &q?oung, 1982, p. 105; the proof is based on an

ih
exchan e argument).

or equivalent expressions such as

Proposition 3. Hill minimizes Z

X. 2 m 2
44 (Lucas, 1978, p. 379) and Zx [& %) (which
X

is equal to the above, except for a constant factor). '

It is not our intention to discuss the validity of the procedures adopted to date for the
apportionment of seats, but they need not be the most appropriate for other circumstances in
which the apportionment problem may present itself, in some cases it may be very natural to try
to minimize a given discrepancy function yet have no reason to impose properties such as H,
which seem unavoidable when apportioning seats. With this approach, there is a necessity for

some procedure which will optimize the discrepancy function adopted.

Tt would also seem to be desirable to be able to determine easily which types of discrepancy
finction a given procedure optimizes, since, at the very least, this helps us to understand what the '
use of the method implies.

3. Generalized divisor methods (GDMs)

The problem posed is as follows:

Given:




m, h (positive integers)
values g, (i=1,...,m)

and functions f(g,,.x;) (i=1,...,m), defined for the integer values of x, and such

that

fi(qih>xi)5%[fi(qih>xi_ 1) +f;‘(qih>xi+l)] 1)

(these f; are functions of a single variable, x,, since g, intervenes as a parameter)

To solve:
PRI [MIN]zg=3_ /(g% )
i=1
Yxch @)
i=1 :
x>0 and integer “)

It is clear that for (1) to be fulfilled it is sufficient for f; to be convex.

In some applications £,(q,,,x)=f(q,*) Vi, ie., the function is of the same type for all values of

i , but this is not necessarily the case. Habitually, if f; is defined for the real numbers:
fi(qjh>q,'h)=0 Vi 3
However, initially we only suppose property (1) to be fulfilled.

The mathematical program PR1 can be solved by dynamic programming (being very similar to

the knapsack problem). Now, we can write
VLGP, =?: ACPRIECAR Y] +J§(qih,0)=ﬁ(h,0)+kz 8,(h)
=1 =]

with




0, (M) =7 (43R) S (@K~ 1) 6)

and we get

8,(m)<b, ., () | )
since
ORI T O O VB O Ve O T/ O O V7 RS
which is property (1).
Therefore, PR1 is equivalent to:

m h m
PR2 MINE=), ) 82 5(4.0) ®)

i=1 k=
m h
E Zyikzh )
YienSVy Vi k=1,..h-1 (10)

y,€{0,1} Vik (1)

We shall say that a sequence of (%), for a given 4, is a well ordered sequence (WOS) if and
only if

[{8,(1)<8, 4, ()} V{(i=1 Y\k<k’)}1=[0,(h) precedes d,;.(h)] (12)

In a WOS the values of & increase monotonically and Vi A<k’ implies that 8 (%) precedes
d,/(h), since, for (7), either 8,(A)<d,,(h) or 8,(h)=3,,(h), and in the latter case the tie is
solved by placing 6,(%) before &,,/(%). There always exists at least one WOS (and more than
one if there are ties between different & corresponding to two different elements of M, which can

be solved arbitrarily).

Obviously, then, the solution which corresponds to the first 2 8,(/4) in any WOS is an optimal
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solution of PR2 (and, therefore, of PR1) and furthermore, that any optimal solution of PR2 (and,
therefore, of PR1) corresponds to the first 7 0,(%) in some WOS (property (7) and the definition
of a WOS guarantee the fulfilment of constraints (10)).

Therefore, we can state the following:

Theorem 1. If the functions f(g,.x,) possess property (1), then a solution is optimal for the
function z if and only if it corresponds to the first / elements of a WOS of the d,,(h).

And also the following;

Corollary 1. Given values of &,(%) which fulfil condition (7), the solution determined by the first
h values of a WOS optimizes the discrepancy function z = Z J{4,x) with

S @)= E 0,1 +/(4,,0)-

Where f(q,,0) is an arbitrary constant which, if so wished, can be determined by imposing a

condition such as (2); in this supposition,

fi(q,wo) = -(pih(qih)

with ¢, defined for the nonnegative real numbers and such that

(pih(x)=kZ: 8,(h) VxeN

=1

We can also have f(q,,,0)=-0,,(%), and then f(q,,,1)=0 and f(g,,.x 1.)=Z 8, (7)) Vx22.
=

Moreover, the following is immediate:

m

Corollary 2. An optimal solution for z,= Z J{4,,x;) is also optimal for Z Z F(hx), with F,
such that A (h)=F(q,,.%)-F(q,.%k-1)= g[ﬁlk(h)] where g is a monotonic ﬁmctlon

The determination of the optimal solution does not require the calculation of all the 6, ; it is only

necessary to determine the first 4 elements of a WOS, which can be done iteratively by using the




following algorithm:

GDMA:
x,=0 ‘v’i;61=6i’xi(h} Vi

Repeat 7 times:

Find 7*|0,.=min0; x,.=x,.+1; 6,,=8, = (h)

i i

Let Z, =max,, ?0 i, (4). The value of this function for a WOS, Z,,, coincides with that of the &
occupying the position /; the solution defined for this sequence minimizes Z,, because if there
were a solution X, (7=1,...,m) such that 6, J?1(11)<Z]C} Vi|x>0 there would therefore be at least
h &,(h) strictly smaller than Z ", contradicting the supposition that the sequence is well ordered.
An analogous reasoning shows that the sequence defined by a WOS maximizes the function
z,~mind,

i i,x+]1

position ~+1 in the sequence). Therefore, we can state the following two corollaries:

(the value of which for this solution coincides with that of the 8 occupying the

Corollary 3. An optimal solution for z; also minimizes ZM=maxilx_>06i’xi(h) -

Corollary 4. An optimal solution for zg maximizes z,,=min,, 11 and therefore, if all the & have

the same sign, minimizes 1. 1 =max, :
ZM mlnzéz x; +1(h) . 6i,x,-lﬁl(h)

The term "generalized divisor methods" (GDMs) is justified inasmuch as DMs can be regarded

as a particular case of them. Indeed, in the latter the units are allocated following the

nonincreasing order of the quotients dlz—l and in the GDM the nondiminishing order of the
8. (h), which can be expressed as follows:

d(hk-1)

B ()=————

9

- and the nondiminishing order of the 8,(%) is a nonincreasing order of the d(h,k-1).

x x
For example, for Jefferson's method 3, (h)——-— and for Adams's &, 5 ()=—, as a result of
which, the results which are already known (lga’hnskl & Young, 1982, p. 105§are immediately
inferred from Corollaries 4 and 3 respectively:




e q;
Adams minimizes max,—

*;

X,
Jefferson minimizes maxi.—‘

q;

(due to Corollary 3, Jefferson minimizes max >0 -21, which is equal to max,.ﬁ).
7 i

If the values of x, are bounded, the adaptation of the optimization procedure of the discrepancy
function is immediate; in particular, in the apportionment problem the property quota, Q (the
definition of which was given in Section 2), or the properties lower quota, LQ, (x> lg,,.| Vi) or
upper quota, UQ (x<[q,] Vi), can be imposed on the solution. When there are boundary
constraints, on the whole the optimal solution does not coincide with the constrained one, but for
each of these properties functions exist for which the nonconstrained optimal solution possesses

the property (or for which an optimal solution possessing the property always exists).

For example, let us consider the property Q. A sufficient condition for the existence of an optimal

solution which is Q is:
8128, () Visj and B ()28 o (B) V] (13)

since a WOS then exists in which the units corresponding to x<|g,| precede those corresponding
to |g,]<x,<[q,] and the latter precede those for which x,>[q,]. Condition (13) is fulfilled, for
example, for 7(g,,%,)=%,~q,,|° (c=1) and for any function f(g,,,%,)=f(x,-q,) which is convex,
nonnegative and such that £(0)=0. It is easy to see that the GDM procedure coincides for these
functions with Hamilton's or the LF procedure (an alternative proof of this result can be found in

Bautista, Companys & Corominas, 1994).

Let us now suppose that the functions f, are defined for real values of the variable x and that they
possess the following property:

£(g5)=0 and £(g,,X)>0 V+q,, (14)

Then, taking into account (1), these functions have a diminishing branch (on the left of ¢, ) and

an increasing branch, and the following is therefore fulfilled:

10




8,,()<0 Vk<|q,] and 8,(h)>0 Vk2[q,]+1 (15)

Consequently, in any WOS all units violating property UQ are located after those which are
necessary to satisfy LQ, and therefore, if an optimal solution violates UQ it satisfies LQ. We can

then state the following:

Theorem 2. If the functions f, possess properties (1) and (14), the solutions which minimize zg

possess property LQ or property UQ.

Tn order for the procedure to be H it is sufficient for the order of the 8,(%) not to depend on #;

for this to be the case, it is sufficient for them to be able to be written as:

5, (W=p(h)y(i.k)+C

where p(#) is a function invariant in sign and C a constant. This occurs, for example, with

590" (nceit g 2k-1+2q;, 1 2k-1
q;,=rh Vi and f,-(qimxi):( ) (since it gives & ,(h)= p h=;1_ p

ih ih o, i .
coincides in this case with Webster's —recall Propesition 2), but not with

-2; the procedure

fL@4%)=1%7q;° (c21).

4.- Applications

Theorem 1 and the algorithm inferred from it (GDMA) allow us to optimize the function zZg
obtained by summing several f, possessing property (1), and also to ascertain whether the
procedure coincides with some more specific procedure which is already known, while

Coroliaries 1 and 2, given a procedure belonging to the GDM class, allow us to determine
functions f; for which it optimizes z.

At this point, we \\shall illustrate these possibilities with some examples.

4.1 Optimization of given functions

Once it has been ascertained that the functions f, possess property (1), all that remains is to

calculate the 6 and form a WOS (or apply GDMA).
11




x~q,)? k-q,,)* k—l—.2 2
For example, for £, (qlh,x)——(—’——qﬂ, ,k(h)'( 9w _{ ) _y__ and therefore,
X; k k-1 k(k 1)
a seqzuence in nondiminishing order of the & corresponds to a nonincreasing order of the quotients

i

or of the quotients which amounts to the same (i.e., the method coincides in

k(k 1) *(k-1)
this case with Hill's; recall Proposition 3).

m (x-q. )2
As a second and final example, if we consider the optimization of ) [ Jih—] we reach:
i=1 qih
2%-1_2
2

9in Din

8,)-

4.2. Functions f; for which a procedure minimizes z

We shall study a number of methods, including the five traditional DMs.

Firstly, let us take DMs with d(a)=a+o.; this family of DMs includes Adams's (&=0), Webster's
(2=0.5) i and Jefferson's (a=1).

dk-1) _k+a-1

i Din

From (k)= we get:

19,%)=3. 8,(h= 0, +2a-D)]

[x (q,;,+05 0‘)]2

and minimizing E Jf(gq,,x) is equivalent to minimizing Z

i=1 i=1 q}‘h
In Hill's procedure, 0 ik(h)=—-—-——vk(k—1); therefore, we immediately obtain
*i Din
fi(q,.h,xi):i Y J&(k-1) Now, we can also use Corollary 2, and:
Tin k=1
With A, (i)=-——— (k=2,..,m)and A, (R)<A,(h) Vij, we get cither.

8,1

m 2 2
I L Tin —E (x, q,h)

=1 X;
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However if we doA,(M)=[0,(M]* we get f(qih,xi)=%(xi—l)xi (x,+1) and
_E X, =4~ i
=1 qih

and for A, (h)=In[8, ()T (k=2,....;m) and A, (W)<A (k) Vi:

x| m 2 x.1)?
f(g;x)=In ( ) and —lnH @) )orz —lnH Py f 1) ,where I"
xiqzh xiqih = Xlin . (I‘(qzh+1))2
is the Euler gamma function.
Finally, let us consider Dean's procedure:
dy=2E0) 5 =) . ZKED) e o A (H)=In "‘( ) (k=2,...m)and
pel @G (2k-1)g,,
2 - -
()2 mo (e l)2
A, (m)<A(h) Vij, weget f(g,x)=In——— d z=ln] | or
o i S e

()27 "' (2q,,)
U xZgr 7 2x, - 1)IT(g,, + 1))

z S—lnH

Corollaries 3 and 4 can easily be applied to all these procedures.

5. Conclusions

The apportionment problem is a classical problem with numerous and varied applications (the
typical one being the apportionment of seats in a chamber of representatives). One way to

approach it is the optimization of a discrepancy function.

We have presented a more general formalization of the problem and we have proposed an

optimization procedure for a very broad class of discrepancy functions; this procedure can be
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regarded as a generalization of the divisor methods (DMs), which have been developed in relation
to the apportionment of seats, and also includes, as specific cases, other procedures for the
apportionment of seats with do not belong to the DM group. We have also presented the
properties of the procedure and, lastly, some applications to the optimization éf specific functions
and the determination of families of functions, which are optimized by a given procedure which

is a particular case of the general proceduré proposed.

One possible extension of this work is the solution of minimax problems.
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