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RESOLUTION OF THE PRV PROBLEM 

for J. BAUTISTA, R. COMPANYS and A. COROMINAS 
DEPARTAMENT D'ORGANITZACIO D'EMPRESES 

UNIVERSITAT POLITECNICA DE CATALUNYA 

SUM:MARY: Sequencing units that go along a production or assemb1y line, with the 
objective of attenuating the variations in the rates of resource consumption is a problem 
that has received growing attention during the last years. In the present work a particular 
case is analysed, the PRV problem (product rate variation) with convex and 
syrnmetrical function of discrepancy, the equivalence with the-determination of a 
minimal path in a graph is shown and properties that must satisfy an optimum path are 
established. Such properties can be used to improve the various heuristic procedures 
efficiency and an exact procedure based on the BDP (bounded dynamic programming). 
Supposing the discrepancy function will be quadratic, quite usual consideration in the 
literature, sorne of the properties can be expressed in a more restrictive form, that 
increases the efficiency of the procedures at the same time. The results of a short 
computational experience are included. 

KEY WORDS: Just-in-time production systems, seque~q:ing, mixed-model assemb1y 
lines .::i~?f-,.~:' 

1. INTRODUCTION " " , 
,.'1 ... 

In mixed assembly production lines, all the units are not identical. AH of them have a 
certain degree of similarity but they can vary in difIerent aspects that influence the 
consumption of such unit resources (load the workstations andlor components 
consumption). The sequence of the units with the objective of attenuating the variations 
of the rates of resources consumption is a problem that has received attention during 
many years and acquired more relief in the literature since 1983 on account of its 
relationship with the JIT concepts. 

Kubiak (1993) presented an interesting description of the state of the art, in which he 
classified the sequence problems in the indicated context in two categories: PRV and 
ORV (a more detailed classification can be found in Bautista, Companys and 
Corominas, 1996d). 

In the prob1em PRV (product rate variation) the established objective is the 
minimization of the rate variation, in which the different products can be in any segment 
of the sequence. The problem was presented by Miltenburg (1989) and studied by 
Miltenburg, Steiner and Yeomans (1990), Sumichrast and Russell (1990), Kubiak and 
Sethi (1991), Inman and Bulfin (1991), Bautista, Companys and Corominas (1992), 
Steiner and Yeomans (1993), Ding and Cheng (1993a and b), Bautista, Cornpanys and 
Corominas (1993), Kubiak and Sethi (1994), Yeomans (1994) and Bautista, Companys 
and Corominas (1994, 1995, 1996b and c), Cheng and Ding (1996) and Bautista, 
Companys and Corominas (1997), among others. 
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The problem of the regularity of the consumption of components was formalized by 
Monden (1983) and called ORV (autput rate variatian) by Kubiak (1993). It has been 
studied by Miltenburg and Sinnamon (1989), Miltenburg and Goldstein (1991), Bautista 
(1993), Bautista, Companys and Coraminas (1995 and 1996a), Duplaga, Hahn and Hur 
(1996), and Steiner and Yeomans (1996), among others. 

This work is centered in the PRV prablem that is formally presented in the section 2. In 
section 3 we show the correspondence between the prablem and the search of a minimal 
path in a graph. Relaxing a condition, the continuity constraint, the problem has a trivial 
solution that is analyzed in section 4. Afier demonstrating a property thatrcan permit, in 
sorne cases, the reduction of a PRV prablem to other simpler ones (section 5) of the 
same type, we analyze the path generation in the graph, specially in those which the 
optimum path can be found between them (sections 6 to 9). In section 10 we propase a 
heuristic algorithm that pravides good results" and in section 11 there are sorne 
modifications for the constructive algorithms in order to improve the efficiency. In 
section 12 we propase an exact algorithm providing sorne computational experience, 
obtained using heuristic and exact algorithms in section 13. The work ends with sorne 
conclusions and the bibliography. 

2. FORMULATION OF THE PROBLEM. 

, ... - ~ ... ' ,.:. 

,}r::~:' 
:'.:,. , 
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The traditional formulation of the PRV problem is tlle,~f<?llowing~ units of P different . 
products have to be sequenced in a praduction or asseinp~'y line; the number of units to 
ofthe product i to sequence is ui (i=1,2, ... ,P). The total úIiits to be sequenced are T: 

p 

T= L Ui 
i=l 

The positions in the sequence will be indicated by the index t (t=1,2, ... ,T) on account of 
the implicit supposition of the fact that all the units circulate at a constant speed in the 
lineo The ideal or mean rate ofthe product i in the sequence is ri (i=1,2, .. ,P): 

Ui 
n=-

T 

To define the position of the units in a sequence, we will present the values xi t 
(i=1,2, .. ,P; t=1,2, .. T) correspond to the number of units of the product i sequencect 
between the positions 1 and t (both inclusive). For the shake of coherence, we will 
establish xi O = O (i=1,2, ... ,P). , 

For any value of t, the ideal number of sequenced units for the product i between the 
positions 1 and t would be t.ri, while the real value for a sequence is Xi,t; it seems to be 
useful to measure the non-regularity of the sequence through a distance between both 
sets of values. A quadratic distance is usually used, so the formulation of the search for 
the optimum sequence can be formulated as: 

2 
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T P 

[MIN] SDQ = I. I. (Xi,t - t.ri)2 (01) 
f=! i=! 

s. t.: 

p 

I. Xi,! = t (t=1,2, ... ,P) (02) 
i=! 

O:s; Xi,t - Xi,t-l :s; 1 (i=1,2, ... ,P; t=1,2, ... ,T) (03) 

Xi,t :s; Ui (i=1,2, ... ,P; t=1,2, ... ,T) (04) 

Xi,! ~ O and integer (i=1,2, ... ,P; t=1,2, ... ,T) (05) 

The constraints (04) and (05) define the values xi t as non negative integer not higher 
than ui and the constraint (02) that the total num:ber of sequenced units between the 
positions 1 and t is exact1y equal to t. The constraints (03), which can be designated as 
continuity constraints, impose that the sequenced units until the position t include the 
sequenced ones up to the position t-1; this)mplies, combtned with (02) and (05), that 
the values Xi,t will be all equal to Xi,t-1 except one that i.~Y,a~nit greater (the one which 
corresponds to the product i sequenced in the positiolit)'. StrictIy, it wou1d not be 
necessary to impose in (03) that the difference was not b:e:"higher than one, as this fact 
already is implied by the set of constraints. The objec.tiY(}Junctiq~ (01) measures the 
quadratic discrepancy between the real and the ideal válues; it is, though, an index of 

# :' 

non-regu1arity in the sequence. Its minimization leads to find a sequence whose index 
will be as low as possib1e and consequent1y, the discrepe,ncies will be global1y low.· . -

Many of the properties we will expose below admit the measurement of the 
discrepancies through expressions not necessarily quadratic; in that case, we will 
substitute the objective function by: 

T P 

[MIN] SDP = I. I. <P(Xi,t - t.ri) (06) 
f=! i=! 

where we will impose <p is a real convex (stríctIy), symmetrical function of real variable 
and takes the value O at the O point: 

<pea) = <pe-a) to al1 a 

<p(0) = O 

Many properties of the optimum sequence according to SDP we will describe below 
require on1y the convexity of <p. In the estab1ished form <p is a function that grows for a 
> O and decreases for a < O, with a minimaI value for a= O. A property of <p that we will 
use extensively i8 the following: . 

3 
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PROPERTY P: Given a function cp, according to the defined type, and four points al, 
a2, a3 and a4 such that: 

and that: 

it is fulfilled that: 

Indeed, it is deduced fram the conditions that also: 

therefore, it exists a value of A (O < A< l) such that: 

A.al + (I-A).<X4 = ai'i~ ;:' 
""$.~('.':: 

.. ' :. ;.i~:: 

(l-A).al + A.a4 = aj:;.:.: 
-, 

so: 
• . t 

... lo4 : .~ .. ' .. 
, -

.. 
): .. " 

A.cp(al) + (l-A)·CP(fX4) > cp(a2) 

(l-A).cp(al) + A.cp(a4) > cp(a3) 

and the wished expression is obtained adding both inequalities. 

It can be observed that we have not fixed the relative po sitian between a2 and a3 (it can 
be a2 > a3, a2 < a3 or a2 = (3)· 

(If the function cp was not be strictly convex, such as cp(a)=lal, the below general 
conclusions would be applicable though the number of cases with possible nonchalance 
or tie would be higher; for example, in the fonnulation of the property P the sign > 
would have to be substituted for ~). 

Other reasonable forms to measure the non-regularity are possible, but those indicated 
are the only considered in the present work. 

In the below statements, given a sequence S, the index of non-regularity will be 
designated either as SDQ(S) or SDF(S) according to the measuring formo The term of 
the index corresponding to the position t (contribution of the position t) will be 
designated as SDQt(S) or SDFt(S): 

4 
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SDQt(S) = 22 (x¡,t - t.ri 
i=l 

p 

SDFt(S) = 22 <p (Xi,t - t.ri) 
i=l 

1t can be observed that these contributions depend on t and on the values Xi,t, that is to 
say, on the number of units sequenced between 1 and t for each product, but nor strictly 
on how such unÍts have been sequenced neither how the rest will be sequenced. 
Consequently, if Xt whose components are Xi,t is calIed the (P,I) vector, in many 
occasions it will be more comfortable to write SDQt(Xt) and SDFt(Xt) than SDQt(S) 
and SDFt(S). AnalogousIy, let a¡,t be: 

a¡,t = Xi,t - t.ri 

and at, the (P,I) vector whose components are ai,t . 1t can be written that: 

<lt = Xt - t.r = Xt - r.O' .Xt = (1 -r.O').Xt = B.xt 

... " ~~.., .~ 

where r is a (P,1) vector whose components are Ti, O is-L~'~JP,I) vector with alI the. 
components equal to 1, O' is the transposed vector of O rui~I is the unit (P,P) matrix. 
Take into account that the constraint (02) is equivalent to: ,+,' 

.O!,,_ 

O'.Xt=t 

and so: 

O'.<lt = t - t.O'.r = O 

which is equivalent to: 

p 

22 a¡,t= O for all t 
i=l 

The (P ,P) matrix B is independent of t and fue components are: 

bi,j = - ri if i"* j for i = 1,2, ... ,P 

bi,i = 1 - Ti for i = 1,2, ... , P 

being fulfilled B.O = O, where U is the (P,I) vector of components ui. 

p 

We will write <p(at) instead of 22 <p(a¡,t). In the case of quadratic discrepancy: 
i=l 

5 
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where the matrix A = B'.B, independent oft, has components: 

for i,j = 1,2, ... ,P 

ai,i = d + 1 - 2.fi for i = 1,2, ... ,P 

where: 
p 

d= L r? 
i=l 

The matrix A is symmetrical and semidefinided positive. It is fulfilled that: 

U'. A. U=O since A. U = O 

The use of a matrix scheme facilitates to obtain- recursive expressions for the 
computation of SDQt. Given a possible sequence S, with Xt+ 1 = Xt + Ii where Ii is the 
i-th column of the unit matrix, what means a unit of the product i has been sequenced in 
the position t+ l in the sequence : 

SDQt+l = (Xt + I¡)' .A.(Xt + Ji) = SDQt + Ai' .x~;~fai,i 
,.:;t,{i 

where Ai is the i-th column of the matrix A and ai,i the el~~mt (i,i) .of such diagonal 
matrix.' ' . . : ú\ >'_ 

.,. '., . . . 
Kubiak and Sethi (1991, 1994) demonstrated that if the óbjective function can be 
represented as a sum of discrepancy measured through a nQn-negative, symmetrical and 
convex function (such as <p), the problem of searching aÓ úptimum sequence can be 
reduced to an assignment problem. Bautista, Companys and Coraminas (1994) 
generalized the procedure for different families of objective functions. But this approach 
will not be treated in the present work. 

3. A GRAPH ASSOCIATED WITH THE PRV PROBLEM. 

A multistage graph with T+1 levels can be associated to any given PRV problem. At 
level t (t=O,l, ... ,T) the vertices correspond to all combinations of non-negative integers 
whose sum is t and such that the i-th addend is not higher than ui, that is to say, vectors 
X that satisfy the conditions: 

O'.X=t 

O~X~U 

X has integer components 

which can be seen as a rewriting of the constraints (02), (04) and (05). Therefore, the 
vertices of level t correspond to vertices Xt which are fe asible for the PRV problem. At 
level O, there is a single vertex, corresponding to the (P,l) vector O with all components 

6 
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equal to O, and at level T, a single vertex corresponding to the vector U. Given the 
'correspondence between vectors and vertices, we will designate these with the same 
symbol that the vector. Between a vertex X at the level (t-1) and another Y at the level t, 

. an arch will exist if: 

X::;; Y 

whose correspondence with the constraint (03) is obvious. The arch joins a vertex with 
one of thepossible following ones in a sequence. Consequently, any path from the 
initial vertex O to the final one V is associated with a possible sequence of the units in 
the PRV problem. 

In each vertex Xt a value corresponding to the discrepancy function <pe (Xt) will be 
associated; in the vertices O and V such value will be zero: <p(0) = <p(V) = O. The length 
of a path in the graph will be the sum of the values associated to the vertices of a path 
which goes through and such length will be the snp value of the associated sequence. 
The problem of seeking a sequence that minimizes snp is reduced to the problem of 
seeking a path with minimallength in the graph, which can be solved with any of the 
efficient algorithms for this problem. 

,r, ,,~# .~ 

The difficulty is obvious; yet with moderate values on~~:~d ui, the graph can reach 
boundless dimensions. The number of vertices in the gra.~~!is: 

-1; : 
p 

I1 (Uí + 1) 
.: ~}, " , 

.J! •. " 

;=1 ,~ ::' 

and the number of different paths: 

T! 

and though the algorithms do not compel to list all the paths, they lead to eValuate all the 
vertices, what can be prohibitive. 

A property of the graph is the symmetry: the number of vertices at levels t and T -t is the 
same. On the other hand, if <p is symmetrical, a vertex at the level T -t corresponds to a 
vertex at the level t with the same associated value. Particularly, the vertices which 
accomplish this property are those such that: 

X+Y=V 

indeed: 

B.(X + Y) = B.V ~ O 

and the symmetry of <p implies that <p(B.Y) = <p(-B.X) = <p(B.X). 

7 



The levels with greater number of vertices are T /2, if T is even, and (T -1)/2 and (T + 1 )/2, 
if T is odd (in this last case, these two referred levels have the same number of vertices). 

Given an optimum path from O to U, corresponding to an optimum sequence S, if <p is 
syrnmetrical, the inverse sequence S-l, that is to say, that sequences a unit of the product 
in t that S sequences in (T -t+ 1) for all t, it is also an optimum sequence. Both sequences 
may be identical, but this cannot happen if T is even and some odd value ui exists or if T 
is odd and more than one odd value ui exists. So, as a rule, more than one optimum 
sequence will exist. 

4. MINIMIZATION OF SDFt 

A first issue with a simple answer is to determine the vertex at the level t whose 
associated value will be smaller, that is to say, to solve. the problem: . 

[MIN] <pea) 

s.t.: 
a=X-t.r 

O'.X=t 
t . 

o :::;; x :::;; U and integer cOIl}p()~ents xf; ':. 

The constraints are the same of the original problem except that one about continuity, 
without having meaning in this context, and we have omitted the subscript t in order to 
be simpler. 

1t can be observed that given the previous conditions, as it has been already indicated in 
section 2: 

O'.a= O'.X - t.O'.r = O 

therefore, the sum of values ai is zero in a feasible solution. We are going to establish 
several results that allow us to define an algorithm to calculate the optimum values xi. 

LEl\1MA 1: Given a, an optimum solution of the problem, two of the components ai 
and a} associated to the values xi and X} such that O < xi and Xj < Uj should fulfil: 

Indeed, if it would not be thus and ai - aj > 1, the~ by means of the property P: 

and ai - 1 and CXj + 1 define, with the rest of the ah components in the previous solution, 
a new feasible solution of the problem (they guarantee the integrity, non-negativity and 

8 
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that neither xi nor Xj do not exceed their respective upper bounds, without altering their 
sum) whose value of the objective function is better, what contradicts the hypothesis 
that ai and aj belong to an optimum solution. 

Let us go to consider the integer and the fractional part of the values t.r¡ > O: 

t.ri = ei + qi with ei ~O and integer; ° ~ qi < 1 

LEMMA 2: If qi = 0, then xi = ei and ai = O in the optimum solution. 

Indeed, if it would not be thus, xi ~ ei + 1 or xi ~ ei-l. In the first case, ai = xi-ei ~ 1, 
and since the sum of the ah (h=1,2, ... P) musí be zero, there is a product j with {Xj < O; in 
such case, ai - aj > 1 stands in contradiction with lernma 1 (since it is possible a 
solution xi ~ 1 and Xj < t.rj ~ Uj)' Analogously, contradiction could be obtained in the 
second case. 

LE:M:MA 3. If qi > O, then xi = ei (ai = -qi) or xi = ei + 1 (ai = l-qi) in the optimum 
solution. 

Indeed, if it would not be thus and x i ~ ei + 2, then ai ~~'g;:- q i > 1 and the argument 
given in lernma 2 could be reiterate. Analogously, in case~~~.ki ~ ei - l. 

~t 

~~~;: . . 
LEM:MA 4. If qi > qj and Xj = ej + 1 in the optimum solutiop, xi = ~i; + 1 is also. 

o 'li. 41. ; :. •• ~ ••• 

In effect, if we had Xj = ej + 1 and xi = ei, that is to say,.ttj = l-qj and ai = -qi, then it 
would happen that: ... 

against what was established in lernma 1. 

Consequently, the procedure of the largest fractions (LF) proposed by Alexander 
Hamilton in 1791 for the apportionment seats at the Congress of the States of the Uníon 
can be used to determine the optimum values xi. 

LF ALGORITHM: 

Step 1: For each product i, t.q = ei + qi is determined. 
Initially, ei units (xi = ei) are assigned to each product i. 

p 

s = t - I, e¡ is calculated. 
i=l 

Step 2: While s > O 
Determine a value for i that qi is maximum (ties can be solved 
arbitrarily). 
Do xi = xi + 1, s = s - 1, qi = qi - 1 

End while 

9 
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Consequently, in the original PRV problem, for each value t we can determine a vertex 
. XtH whose associated contribution <Pt~ is the mÍnimal contribution at the level t. If a 
path that goes through the vertices XtH exist in the graph, thát path is associated to an 

T 

optimum sequence of the PRV problem with value BH = I. <pr .Unfortunately, it is 
1=1 

not guaranteed that the successive values XtH satisfy the continuity constraint (03) and, 
therefore, an arch connecting them may not exist. This fact can be increased by the 
multiplicity of solutions for some values of t (and then, depend on the form of solving 
ties), but it is intrinsic to the problem and it can be produced yet taking into account all 
the solutions and all the optimum vertex couples at t-1 and at t. It corresponds to the fact 
that LF is not "house monotone" and the appearance of such phenomenon is due to the 
called paradox 01 Alabama. In any case, BH is a good lower bound for the SDF value in 
the optimum sequence. 

To deal with sorne aspects that will be used below, it is convenient to study a problem 
derived from the previous one: 

[MIN] <pea) 

a=X-a 

,~ • J"~ .~ 

1.~ ~. 

,;Y~~~; 
~'., . 

'~ó··~ . 

s.t.: 

O'.X='r 

b .:::; X .:::; U and integer component~ Xi 

' . .. . 
,¡',-

That is to s ay, we consider X is lower bounded by a vector b, and we consider the 
possible difference between O'.a and 'r. We will suppose that: 

b 2::0 and with integer components; O'. b = w 

a;?: 0, O'. a = s 

O' .U = T, ° < 'r < T ,'t, T and integer U components 

We will also consider w < 't (if w > 't, the problem has not solution, and if w = 'r, the 
solution is trivial, X = b). 

O'.a = O'.X - O'.a = 't - S 

That is to say, the sum of ai in a feasible solution is equal to a constant. In these 
conditions, the adjustment of the lernma 1 would be the following: 

LElVIMA 5: In an optimum solution of the previous problem two values ai and a} 
associated to the values Xi and Xj' such that bi < Xi and Xj < Uj' have to fulfil: 

10 



The demonstration is analogous to that accomplished in lernma 1. 

Consequently, it will be applicable an adjustment in the LF algorithm after classifying 
all i values in two classes: JO referred to the variables conditioned by the lower bound, 
and JI, referred to the no conditioned ones. The set JO can be empty. 

LF _2 ALGORITHM: 

Step 1. Determination of JO and JI 
Initially: 

I 'r-s 
Jo = {i a¡ + p < b¡ } JI = { i liÉ Jo } 

If JO is empty, do PI = P; 'tI = 't and sI = s. Go to the step 2. 

Otherwise, we call PI to the number of elements in JI and 

SI = L a¡; 'tI = 't - L b¡ 
ieJ¡ ieJo 

¡,f'.;· 
. 'rI - SI (i. ' 

While there is i E JI such that a¡ + < b¡ , do: ¡,; ¡, 
PI ~~. 

Add i to JO; eliminate i fram JI and update PI, sl~'~d 'tI .' 
End while. .~. "1, .',,¡ ,i<,' 

Step 2: Determination of Xi: 

Ifi E JO, then Xi = bi 

Apply the LF algorithm to determine the values Xi such that i E JI; distributing 't 
1 instead of t, and using for the determination of ei and qi, instead of t.r¡, the 
values: 

a¡+ 
'rl - SI 

PI 

which are not negative and whose sum is equal to 'tI. 

The demonstration that the algorithm leads to the optimum solution is a repetition of the 
already indicated arguments. 1t is sufficient to add that if JO is not empty: 

'r - S 'rl - SI 
--> 

P PI 

The second member is reduced each time we withdraw an element of JI and join it into 
JO, what justifies that the elements incorporated to JO are not reconsidered in the step 1 
of the algorithm, and on th~ other hand those belonging to JI are considered. 

11 
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In this section, we have only used the convexity of the function <p; therefore, they are 
valid though <p is syrnmetrical. 

5. CYCLIC SEQUEN CES. 

First we will propose the following lernma: 

LEMMA 6: An optimum solution S for the PRV problem with the objective function 
(06) and the constraints (02), (03) and (05) will fulfil the constraint (04) (that is to say, it 
is not necessary to impose the constraint (04) explicitly). 

Indeed, if constraints (04) were not be fulfilled in this way a product i such that xi,T > ui 
would exist in S. Let us cal1 S a sequence though it would not be for the original 
prob1em. Let tI be the frrst position in the sequence S in which xi t is higher than ui, , 
then for any value oft, tI :s; t:::;; T, a productj such that <Xj,t < O (not necessarily the same 
for different t) exists. Indeed: 

!,l~.;· 
and as the sum according to h of the ah,t is zero for any t vá1~e, the result is deduced. 
Let us construct a sequence S ' that coincides with S from ~ipe position 1 to t¡ -1, and 
such that from the position tI has a unit les s of product ir :such un~~ is moved to a 
productj whose aj,t will be negative (this corresponds to sequence a ún'it of j instead of 
a unit of i in the position tI of S' as it is made in S). In the foJIowing positions to tI and 
while a j unit will be not sequenced in S, we do the same movement. If in the position t2 
> tI aj unit is sequenced in S, we analyze once_again the situation choosing eventually a 
product j' with negative aj',t as receiver of the movement (what corresponds to sequence 
in the position t2 of S' a j' unit instead of the j unit sequenced in S and that it has been 
advanced to the position tI). We continue in this way until reaching the position T. 

For any position t such that tI:::;; t :::;; T the SDFt value is smaller in S' than in S, since the 
accomplished changes have been centered in products i and j such that: 

and the improvement remains established by lernma 1 and the proposition P. So: 

SDQ(S) > SDQ(S') 

and S' is a sequence that satisfies (02), (03) and (05), in which product i takes the value 
ui in the position T or surpasses it in a unit less than S. Consequently, S cannot be an 
optimum solution in fhe conditions of the statement. 

The previous procedure can be used systematically to transform a sequence S that 
satisfies (02), (03) and (05) but not (04) into another that satisfies the four constraints 
with a lower SDQ value (the transformed sequence is not necessarily optimum). 

12 

.,Ir 

::1' 

r! 
l'i! 
~~; 
l! 
¡" 

I
'} 

~s ,~ 
[1 
"¡

!, 
1, 

;j: 



This result only requires the convexity of <p. 

THEOREM 1: If the greatest cornrnon divisor of the values ui is m > 1, an optimum 
sequence of the problem can be obtained repeating m times an optimum sequence of the 
reduced problem with a number of units for the product i in the sequence equal to u/m 
(i = 1,2, ... ,P) and a total number ofunits in the sequence equal to T/m. 

Substantially we are postulating that in an optimum sequence is fulfilled that: 

ai,t = ° for a11 i = 1,2, .. ,P and t = T/m, 2.T/m, ..... , (m-l).T/m 

We will demonstrate the theorem for m=2. Let S be an optimum sequence we suppose 
that all the values ai,T/2 are not annulled in TI2. We can decompose the sequence S in 
two segments SI and S2, the former corresponding to the positions between 1 and T/2 
and the latter, between T/2+1 and T. The concatenation of SI and S2leads to S, and we 
will write SI * S2 = S. 

According to what was established in lernrna 6, the sequence S 1 can be transformed into 
the SI' with the values ai,T/2 = 0, considering the reduced problem, which is obtained 
dividing by two the total number of units for each product to be sequenced. We can 
easi1y observe the original values ri are identical than those of rhe reduced problem. 

We can also transform the sequence S2 into the S2' using thé 'symmetry of the problem 
(that is to say, inverting the sequence and considering the sequence of 1:/2 units). The 
two sequences can be concatenated since, for each product, hatf of the total units in SI' 
and the other half S2' have been sequenced. S' = SI' * S2' is a possible sequence for the 
original problem and its SDF value is better than that corresponding to S, since the 
accomplished transformations improve systematically the values in the reduced 
problems; and the contribution in TI2, cornrnon to both subsequences considering the 
reduced problems and the inverse of one of them, it is zero and do es not produce 
distortion in the global SDF value. Consequently, S cannot be optimum. 

Since the same number of units for each product is sequenced between the positions 1 
and T/2 and between T/2 + 1 and T, an optimum subsequence for the frrst section is also 
optimum for the second one. 

For m > 2, the demonstration can be accomplished using an induction procedure. 

The aboye demonstration of the theorem requires the <p syrnrnetry in addition to <p 
convexity (in "Note on cyc1ic sequences in the PRV problem" we show this theorem 
with <p functions). 
Therefore, in practical applications we can suppose the values ui are prime numbers; in 
the opposite way, the resólution of the original problem can be reduced to another with 
smaller dimension, and much simpler. 

13 
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6. PATH GENERATION IN THE GRAPH. 

The determination of the optimum path in the graph can be done with one of the usual 
procedures, for examp1e through dynamic programming. Let G-1 Xt be the set of the 
vertices at the level t-1 irnmediately previous to the vertex Xt at the level t, and let us 
call f(Xt) the length of the minimal path from the vertex O to the vertex Xt, we can 
write: 

with 

feO) = O 

This scheme can be applied to functions <p much more general that those indicated and 
coincides with the scheme proposed by Miltenburg, Steiner and Yeomans (1990). Ifit is 
necessary to evaluate all the vertices of all the levels, the volume of calculations and the 
amount of memory can become unattainable. 

An altemative consists of limiting the search to a satisfactory sequence though not 
necessarily an optimum one. The sequence or path is con'structed progressively, and 
once a vertex has been added to the path, on1y the irnmediate following vertices are 
evaluated, and the best one is added to the path, and so on: 9iven a time moment, if the 
path built goes from O to Xt, the following vertex to be added will be;.; 

" 

argmin { <P(Xt+l - (t+1).r) I Xt+1 E G Xt } t;S;T-1 

where G Xt is the set ofXt irnmediate following vertices. 

This procedure coincides formally with the designated "goal chasing'" proposed by 
Monden (1983) for the ORV problem and with the heuristic 1 proposed by Miltenburg 
(1989). For a quadratic discrepancy function, this heuristic leads to sequence in t + 1 the 
product i such that: 

Xi,t - (t+1).r¡ with Xi,t < ui 

takes the lower value. 

Several authors have discovered, from computational experience the behaviour of this 
heuristic is not very efficient because of its short view character, that is to say, due to 
units are sequenced in a position without taking into account the effects caused in the 
following positions. A way of reducing the "short sight" is to consider the contribution 
of more than one are in the prolongation of the path from a vertex Xt. 

If we consider two arcs, we will add to the built path from O to Xt the vertex Xt+ 1 such 
that: 

14 
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argmin {cp(Xt+1 - (t+l).r) + min {cp(Xt+2 - (t+2).r)} I Xt+l E G Xt ; Xt+2 E G Xt+d 
for t::::; T - 2 

This procedure, significantly more efficient than the previous one, coincides formally 
with the heuristic 2 (two-step heuristic) proposed by Miltenburg (1989). For a quadratic 
discrepancy function this heuristic leads to sequence in the position t+ 1 the praduct i 
with the minimal value s(i), where: 

s(i) = SI (i) + minj { s2(i,j) } 

sI(i) = 2.x¡,t - (2.t+3).r¡ ifx· t < U· 1, 1 

Sl(i) =00 ifx¡,t = u¡ 

if i ;t: j and Xj,t < Uj 

s2(i,i) = 1 + X¡,t - (t+2).r¡ if X¡,t < u¡ - 1 

in the other cases 

the expression s(i) corresponds, unless constant values, to the alfferential contribution to 
SDQt+ 1 and SDQt+2 produced by sequencing an i unit in t+ 1 and a j unit in t+2, The 
productj (that can coincide with the praduct i) is determined depending on i to reach the 
possible smaller contribution to SDQt+2. . 

. 
Only the product i, that minimizes s(i), is sequenced in the position t+ 1, and the 
calculation is repeated from such position; therefore, it is very possible that a product 
different framj is sequenced in the position t+2 (or fram i, if the minimum of s2(i,j) has 
coincided with s2(i,i». -

Ding and Cheng (l993a and b) accomplish an adjustment to the previous expressions 
and determine initially a praduct i that minimizes: SI (i), and in function of the same 
product they proceed to choose j (that can coincide with i) minimizing s2(i,j). 

If the two products are different, they prave that sequencing i in t+ 1 and j in t+2 is better 
than using the opposite arder (employing the property O presented in section 8). Their 
heuristic is faster than the 2-step one and gives also good results. Ding and Cheng assure 
that the procedure is a 2-step heuristic but the affirmation is denied by the computational 
experience. In fact, Ding and Cheng pravide a demonstration that finishes with a wrang 
conc1usion as Bautista, Companys and Coraminas (l996b) have shown. 

In section 4 we have shown that a vertex XtH at each level that minimizes the value cp(a 
t) can be very simply determined. If such vertices define a path fram O to U, that path is 
optimum; otherwise, paradoxes will be praduced. The heuristic only will be necessary to 
correct the deviations with respect to a path of the vertex succession XtH, that is to say, 
to avoid the paradoxes. 

In the generation of the vertices XtH , it will be convenierit to avoid the untruthful 
paradoxes produced by ties adopting adapted rules to salve them (for example, ordering 

15 

.'ji' J. 



~. 

:', 

_ AA 

" 

the products by non-increasing ri and using this order as priority to solve earlier ties). In 
case of paradox, that is to say, in case between XtH and Xt+lH does not exist an are, it 
will be sufficient to apply the heuristic from t, if a l-step heuristic is considered, or from 
t-1, if it is a 2-step heuristic. 

The approach of the exact algorithm we present in section 12 consists of evaluating 
progressively at each level, calculating the minimal path from O, those vertices of the 
graph through which, according to the available information, an optimum path from O to 
U can go by. 

.' 
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7. OPTIMUM PROLONGATION FROM A VERTEX 

As the values assigned to the graph are associated to the vertices, one must be cautious 
when subpaths have to be joined together so as not to add twice the contribution of a 
given vertex. Given a vertex X at the level t, a prolongation from the vertex X is called a 
path from a vertex Y at the level t+ 1 up to U such that: Y is an irnmediate following 
vertex to X (there is an are from X to Y). The length of the path from Y to U is called 
the length of the prolongation. Among all the prolongation paths from X, the optimum 
will be considered one of minimallength, and such length will be the distance from X to 
U. 

If an optimum sequence from O to U goes through X, the snp value will be equal to the 
mínimal length of a path from O to X added to the distance from X to U. The same 
difficulties, indicated previously, are found to determine the distance from X at level t to 
U, but it is simple to determine a lower bound for the length using the LF-2 algorithm 
with the values 't = t+1, t+2, ... , , where in this case: 

Let xJi be the obtained vertices (they wilf coincide with x;I from a certain value of 't, 
at least for the 't values such that Xt:::; 't.r), the bound, thél:t we will call k(Xt), will be: 

T 

k(X t) = L. <pe f4 k) 
" 

r=t+l 

If a paradox does not happen in the calculation of the X~, that is to say, the xJi 
determine a path of the graph from Xt to U; such path is an optimum prolongation and 
k(Xt) is the length of such prolongation. 

In the course of the procedure proposed, the length of a minimal path from O to Xt will 
be determined and f(Xt) will be obtained. Therefore, f(Xt) + k(Xt) is a lower bound of 
the length for the paths from O to U that go through Xt. If a path between O and U with 
value zO has been determined by an heuristic, the vertex Xt can be removed from 
subsequent considerations if: 

as no path between O and U that goes through Xt can improve the solution we already 
have. 

If paradox does not exist in the prolongation, we have determined in fact a mínimal path 
from O to U that goes through Xt. If: 

f(XV + k(Xt) < z O 

we will have a new solution, better than the previous one, and therefore zo will be 
updated and also Xt will be removed since we know all the consequent results. 
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8. RULES TO CONSTRUCT OPTIMUM PROLONGATIONS. 

If a paradox happens in the calculation of k(Xt) we cannot have the optimum 
prolongation from Xt. The objective of the rules stated below is to eliminate those 
vertices that cannot. form part of an optimum prolongation as the following ones from 
Xt (at least, at level Hl). And, in such case, those vertices by which a prolongation, 
better than that one which additionally held vertices, cannot go. There are substantially 
two rules: 

RULE 1: If ri > rj and Xi,t - Xj,t ::;; (ri - rj).(Hl), we can get rid of Xt + Ij in the 
prolongation paths from Xt 

RULE 2: If ri = rj and Xi,t - Xj,t < O, we can get rid of Xt + Ij in the prolongation paths 
fromXt· 

We are going to develop the demonstration in different stages. 

PROPERTY o: If the optimum prolc:mgation from Xt has a unit of product j in H 1 and 
a unit of product i in H 2: 

Xi,t - Xj,t ~ (r¡ - rj).(Hl) 

is fulfilled. 

Indeed, if the prolongation is Optimum the value will be lowér or equal to that of the 
identical prolongation in all the positions 1: > H2 but i is seq,uenced in H 1 and j in H2. 
The lengths of both prolongation paths only defer in the contribution of the position H 1 
and it must be fulfilled, therefore: 

where ai t = xi t - t.r¡ and a, t = xJ' t - t.rJ·' According to the proposition P or the lernma 
" J" 

1, it is necessary that: 

that coincides with the indicated condition. 

If: 

Xi,t - Xj,t = (r¡ - rj).(H 1) 

both prolongation paths have the same length and the order for i and j in the positions 
H 1 and H 2 is indifferent. 

On the other hand, if: 

Xi,t - Xj,t < (r¡ - rj).(t+l) 
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a unit of j in t+l and a unit of i in t+2 will not be sequenced In the optimum 
prolongation. When ri > rj the result can be even stronger: 

THEOREM 2: Ji Ti > rj and Xi,t - Xj,t < (ri - rj).(t+ 1) is fulfilled in t (t<T), there is no 
optimum prolongation from Xt in which a unit of j is sequenced before a unit of i. 

Indeed, we suppose Xj,t < ujo otherwise the conclusion would be obvious. In these 
conditions, it will also be fulfilled that Xi t < ui, since , 

Xi.t < Xj.t + (ri - rj)(t+ 1) < Uj + (Ui - Uj) = Ui 

We suppose the conclusion is not fulfilled and, in an optimum prolongation 0', a unit of i 
is sequenced in tI (tl>Hl), and before, a unit of j has been sequenced in t2 (H1 ~ t2 < 
tI). Ji more than one unit of j is sequenced between t a.p.d tI, t2 corresponds to the latter. 
For any 't such that t2 ~ 't ~ t1-1: 

Xi,'t = Xi,t Xj,'t ~ Xj,t + 1 

is fulfilled. 

Therefore: 
CXi,'t = x i,t - 't.r i 

" 

and then: 

a¡.'t - CX:i.'t ~ Xi.t - Xj.t - 1 - 't.(ri - rj) ~ Xi.t - Xj.t -1 - (H1).(ri - rj) < -1 

So, the prolongation 0", identical to the previous one except for t2 ~ 't ~ t 1-1 obtained 
from O' sequencing i in t2 and j in tI, would contribute less in such positions and equal 
in any other. Therefore, the prolongation O' was not optimum. 

COROLLARY 1: Ji ri > rj and Xi,t - Xj,t = (ri - rj).(H 1) is fulfilled in t (t < T) and there 
is an optimum prolongation from Xt ' 0', in which a unit of product j is sequenced before 
a unit of product i, there is another 0" also optimum in which the opposite case happens. 

Indeed, so as to be optimum the prolongation 0', added to the integrity of (ri - rj).(H 1), 
we need that, using the previous notation, tI = t + 1 and t2 = t + 2; so any 't value, 
strictly greater than t + 1, does not existo According to the property 0, if we exchange i 
and j, we can obtain a prolongation 0" with the same value, and therefore it is also 
optimum. 

COROLLARY 2: Ji Ti > rj in an optimum sequence, it is fulfilled for all t = 1, 2, ... ,T 
that: 

(a) 

(b) 
Xi.t~Xj.t 

U¡ - Xi.! ~ Uj - Xj.t 
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Indeed, initially xi,O = Xj,O = O and O < fi - r} so a unit of i will be sequenced befare a 
unit of j in any optimum prolongation from O: the same situation is repeated each time 
Xi,t = Xj,t in the sequence; therefore, (a) must be fulfilled. We obtain (b) using the 
syrnmetry. 

Therefore, a unit of a product i whose rate ri is maximum will be sequenced in the 
po sitian 1 of an optimum sequence (and also, in the position T). A product j with rate rj 
less than the maximum will be sequenced for the first time when at least a unit of each 
one of the products with higher rate superior has been sequenced. 

The theorem 2 and the corollary 1 justify the rule 1. 

THEOREM 3: If ri = rj and Xi,t - Xj,t < O is fulfilled in t (t < T), there is no optimum 
prolongation from Xt in which a unit of j is sequenced befare a unit of i. 

-
It must be considered that in this case (r¡ - rj).(t+1) = O, and let us also consider Xj,t < Uj 
(the conc1usion is obvious in the opposite case) and suppose there is an optimum 
prolongation (j in which i has been sequenced in tI for the frrst time, and previously, j in 
t2 ' with t + 1 :s; t2 < tI. For any 't such that t~ :s; 't :s; tI -1: 

Xi,'t = Xi,t X· 't~X' t+ 1 J, J, 

is fulfilled. 

Therefore: 

ai,'t = Xi,t - 't.ri 

and then: 

Cli,'t - CXj,'t :s; Xi,t - Xj,t - 1 - 't.(ri - rj) :s; Xi,t - Xj,t -1 < -1 

and, therefore, (j cannot be optimum. 

The situation of equality would have to consider that, if there is an optimum 
prolongation with a unit of j sequenced before one of i from t, there is also sorne 
optimum prolongation with the opposite situation. Nevertheless, distinguishing between 
i and j is more embarrassing since ri = rj- In the following paragraph, we will introduce 
the concept of fami1y of products because of this fact. 

COROLLARY 3: If fi = rj in an optimum sequence and for al1 t = 1,2, ... ,T, Xi,t and Xj,t 
can on1y be different in a unit, that is to say: 

XJ' t - 1 :s; Xi t :::; xJ' t + 1 , " 

The demonstnition is analogous to that of corollary 2. 
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In case of quadratic functions of discrepancy, sorne stronger results can be obtained. 

LEMMA 8: If in an optirnurn sequence, with quadratic function of discrepancy, s units 
of the product j are sequenced before a unit of the product i: 

is fulfilled, where tI is the first subsequent position to t in which a unít of j is sequenced 
and to is that in which the first unit of i (t+ 1 ::;; tI < tO) is sequenced. 

The dernonstration is obtained constructing a sequence identical to the original one 
except in the position tI where a unit of i is sequenced and the unÍt of j moved to to and 
irnposing that the discrepancy of this sequence cannot be lower than the previous one. 
The conc1usion of the lernma is independent whether :i is greater, lower or equal to rj-

For ri > rj or ri = rj the rules 1 and 2 can deduced frorn the lernma. In the case ri < rj and 
considering the possibility of locating j in the position t+ 1, we obtain the following 
result: 

RULE 3: If the discrepancy function is quadratic, ri < rj , xi,~< ui and 
;( 

t+T+l 
Xi,t - Xj,t < (ri - rj).[ 2 - Ui + Xi,t] 

. ~ ... 

it can get rid ofXt + Ij in the prolongation paths frorn Xt. ,~ 

We only need to take into account that Xj,t < Uj i~ thé conditions of the rule, and 
furthermore: 

and 

tI = t+l 

s.(s-l) ~O 
2.(to-tl) 

9. FAMILIES OF PRODUCTS 

Several products form part of a family F if they have the same' ui value, and 
consequently, fi. According to what was established ifi,jEF in an optirnurn sequence: 
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will be fulfilled for all t (t = 1,2, ... ,T), that is to s ay, such products will be sequenced 
homogeneously in the optimum sequence; until the first unit of all the products in the 
family is not sequenced, the second of any of them will besequenced, and so on. Let k 
be the number of products in the family; ti, the first position in which the unit a-th is 
sequenced; and t2, the first position in which (a+l)-th of any is sequenced (it is not 
necessary to sequence the same product in tI and t2). In the part of the sequence 
between tI and t2-1, only a unit of each one of the products in the family has been 
sequenced, and given the fi identity, the order in which this may happen is indifferent. 
Given an optimum sequence 

(k!)U - 1 

optimum sequences exchanging the products of the family sequenced in each part can be 
obtained, being u the number of units for each product in the family. ConsequentIy, we 
can establish an arbitrary order between the products' of the family, and consider only' 
the sequences in which the units of the products in the family for each section are 
sequenced in such order: 

RULE 4: If fi = rj , Xi,t - Xj,t::;; O and i < j we can get rid of Xt + Ij in the prolongation 
paths from Xt. -. 

. ,¡:t 

In case of functions with quadratic discrepancy, strong~r conditions related to the 
families can be established: . , 

RULE 5: If the discrepancy function is quadratic, ri = fh > 1J and Xi,t > Xh,t we can get 
rid of Xt + Ij in the prolongation paths from Xt. 

RULE 6. If the discrepancy function is quadratic, ri > rj, i belongs to a family with k 
products in which all adopt the value Xi t = a in t, and , 

1+ k 
a - Xj,t ::;; (r¡ - rj).(t + -2-) 

we can get rid of Xt + Ij in the prolongation paths from Xt. 

The justification is found in the following results. 

LEMMA 9: Let us consider a part of an optimum sequence with quadratic discrepancy 
function, in which the (a+l)-th unit of the products in family F is sequenced between 
two positions: when the first product of the family i takes the value Xi t = a+ 1 and when , 
the last product of the family, h, is equal to Xh,t = a+ 1 (a+ 1 ::;; ui = uh). If products that 
do not belong to the family F are sequenced in such part, their rate is greater than that 
for the products in the family. 

Indeed, if it was not in this way, between sequencing two products of the family, that we 
will call i and h, a product j such that rj < ri = fh would be sequenced. Suppose that i is 
sequenced in tI, j in t2 and h in t3 with tI < t2 < t3' Suppose in order to simplify that a 
unit of j is only sequenced between tI and t3, that is the b+ 1 of such product. 
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If the sequence is optimum, it cannot be improved exchanging i and j or of j and h in 
the sequence, therefore: 

t2-1 

I. [( a+ 1 - 't.ri + (b - 't.rj)2 - (a - 't.ri - (b+ 1 - ,t:.rjiJ ::; O 
't"=tl 

13-1 

I. [( a - 't.ri + (b+ 1 - 't.rji - (a+ 1 - 't.rl - (b - 't.rjiJ ::; O 
't"=t2 

The first expression is equivalent to: 

2 ( ) [ b tI + t2 - 1 ( )"] O . t2 - tI . a - - r- - r- < 2 . 1 J -

and the second one to: 

2 ( ) [b t2 + t3 - 1 ( )] O . t3 - t2. - a - . rj - rh ::; 
2 

That is to say, since fi = lb, 

tI + t2-1 
---- .(ri - rj) 

2 

-1 
i 

But, as tI + t2 < t2 + t3, the foregoing statement stands as a contradiction. 

This lernma is applicable to the optimum prolongation paths from a vertex Xt. 

THEOREM 4: If the k products in a family F have reached the same value xi t = a, ie F, , 
in Xt, another productj with lower rate, fi > rjo with the value Xj,t and it is fulfill~d that: 

1+ k 
a - x- t < (r- - r-).(t + --) J, 1 J 2 

There is no optimum prolongation from Xt in which a unit of j is sequenced before a 
unit of each product in the family if the discrepancy function is quadratic. 

Since lernma 9 shows that j cannot be inserted between the products of the family, it is 
sufficient to demonstrate it cannot be sequenced before the first one. Indeed, suppose 
that it was not be in this way and a unit of j was sequenced in the position to and the 
units ofthe products in the family in tI, t2, ... , tk: 
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........... ----~--------------------------------------"'"l;~::., 

If more than one unit of j is sequenced between t and tI, to corresponds to the last one. 
If the sequence is optimum the associated value cannot be improved sequencing the 
products ofthe family in to, tI, ... , tk-1 andj in tb and therefore>: 

tk-I 

L. [ (a - 't.ri + (Xj,t - 't.rjl- (a+ 1 - 't.ri - (Xj,t-1 - 't.ri] :s; O 
~=l 

Al1 the values Xj, t in the previous expression are identical, and they can be represented 
by b; in such case, the previous expression is equivalent to: 

that is to say: 

2.(tk - tü).[b - a - 1 -
to + tk-1 
--2-- .(rj - ri)] :::; O 

b - a - 1 _ to + ti< - 1 .(rj - ri) :::; O 
2 

But b ~ Xj,t +1, and: 

a - Xj,t ~ 

But t ~ t+1, and t;::: t + k + 1, and: 

to + tk -1 1 + k 
---- ;:::t+ 

2 2 

and a contradiction is held. 

COROLLARY 4: If in the conditions of the theorem 

1+ k 
a - Xj,t = (ri - rj).(t + -2-) 

" 

and there is an optimum prolongation from Xt in which a unit of j is sequenced before 
the units of the products in the family, an optimum prolongation in which the unit of j is 
sequenced afterwards also exists. 

The demonstration is immediate. Take into account that if a unit of j could be sequenced 
in to we would have to postulate: 

> a - (b-1) ~ (r¡ - rj).to 

as a consequence of the theorem 2 and therefore: 
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that is to say: 

The theorem 4 and the corollary 4 justify the rule 6. The lernma 9 does not demonstrate 
that an optimum prolongation from Xt does not exist in which j will be the job 
sequenced in t+ 1, but in such case the path built from O to U going through Xt cannot be 
optimum and, therefore, this justifies the rule 5. 

10. HEURISTIC H2.S FOR QUADRATIC DISCREPANCY 
FUNCTION 

We propose a heuristic, that we call H2.5, for the case of quadratic discrepancy. It is 
substantially a 3-step heuristic in which the products in the positions t+2 and t+3 are 
determined following a simplified scheme based on the heuri$tic of Ding and Cheng. If 
in t+ 1, t+ 2 and t+ 3 a unit of the products i, j and k is sequenced, all different, the 
contribution to corresponding SDQ, excepting constants ind<?pendent of such products, 
is: 

2.[3.x¡,t - (3.t+6).r¡ + 2.xj,t - (2.t+5).rj + Xk,t - (t+3).rk)] .' 

If i, j and k are not all different there will be only necessary to modify Xj,t or Xk,t 
according to the units of j or of k sequenced; for instan ce, if k = i *" j xk t will be . , 
substituted with xi t + 1 and fk with fí· , 

In such conditions a unit of the product i will be sequenced in t+ 1 such that the value 
s(i) will be minimum, with s(i) = sI (i) + s2(i) + s3(i). The calculation of s(i) can be 
accomplished by means of the following algorithm: 

Step 1: Computation of s(i) 
ifxi t < ui then , 

SI (i) = 3,Xi,t - (3.t+6).r¡ 
otherwise 

si(i) = 00; go to the step 5 
end if 

Step 2: Determination of j 
For all h=I,2, .. ,P do Yh = xh t ; Yi = Xi t + 1 .' , , 
s2(i) = minh {2.Yh - (2.t+5).rh 3 Yh < Uh };j = value ofh provided by s2(i) 

Step 3: Determination of k 
For all h=I,2, ... ,P do zh = Yh ; Zj = Yj + 1 
s3(i) = minh {zh - (t+3).fh 3 Zh < uh }; k = vaIue of h provided by s3(i) 
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Step 4: Permutation of j and k 
If j ::j: k and Yj - Yk < (rj -fk)·(t+2) 

Exchange j and k 

Endif 

s2(i) = 2.Yk - (2.t+5)·fk 
s3(i) = Yj - (t+3).rj 

Step 5: Computation of s(i) 
s(i) = s 1 (i) + s2(i) + s3(i) 

This procedure allows sequencing the first T-2 positions. Two units without being 
sequenced will remain for the two last positions. That corresponding to the product with 
lower rate will be located in the position T-1, using the rules; if the remaining units are 
from two products with identical rate or from the same product, the order of sequencing 
is indifferent. 

11. HEURISTIC WITH FILTERING OF THE CANDIDATES BY 
MEANS OF THE RULES. 

'J 

The behaviour of the heuristic is notably inefficient in presence of product families. A 
form of lessening this fact consists of the utilisation of the stated rules in the selection of 
candidates for the sequence. As it can be observed in the computational experience 
included in section 13, such filtering generally increases the 'efficiencyof the rules. In 
spite of the fact that in sorne instances the solution obtained with the filter is worse than 
the one obtained without filter (especially in the heuristic D.C and H2.5), the number of 
times in which the opposite situation happens compensates widely these results. 

12. ALGORITHM TO DETERMINE AN OPTIMUM SEQUENCE. 

The algorithm is based on the application of BDP (bounded dynamic programming) 
described in Bautista, Companys and Corominas (1995). 1ts basic structure is as follows: 

Step O. Initialization 
0.1 Determination of the initial bound. XtH and the associated value are 
determined for each value of t; if paradox do es not happen, we have an optimum 
solution and the algorithm ends, otherwise go to 0.2. 
0.2. Determination of an initial solution. Applying a heuristic method (for 
example the H2.5) an initial solution is determined and its value, the incumbent 
one, is zO. 
0.3. Initial vertex of the graph. Put in .the list Lo the vertex O, the value f(O)=O 
and the associated bound with the best prolongation k(O) = SBH. Do t=O. 

Step 1. Generating the foIlowing ones. 
1.1. The following possible vertices from a vertex are generated in the order of 
list 4 taking into account the rules. Let Xt+ 1 = Xt + Ij be one of the following 
ones. 
1.2. If Xt+ 1 is already in the list 4+ 1 we can get rid of it. Go to 1.4. 
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1.3. If Xt+ 1 was not in the list 4+ 1, it is added with the value 
f(Xt) + <p(Xt + Ij - (t+1).r), and the origin Xt. 

1.4. Another following vertex is generated, or, if it is necessary, the following 
vertex of the list 4 is taken, go to 1.2. If thére is no more vertices in 4 to 
generate the following ones, go to the step 2. 

Step 2. Evaluating. 
2.1. The bound of the prolongation of the vertices in -4+1 is evaluated. Let 
k(Xt+ 1) be the bound for the vertex Xt+ 1· 
2.2. Iff(Xt+1) + k(Xt+1) ~ zQ eliminate the vertex Xt+1 ofthe list 4+1. , 
2.3. If f(Xt+1) + k(Xt+1) < zQ and in the calculation of the bound paradox did 
not happen, do zQ = f(Xt+1) + k(Xt+1) and keep Xt+1 as a vertex belonging to 
the best found solution. Eliminate Xt+ 1 of the list 4+ 1. 
2.4. If in the calculation of the bound paradox happens, maintain Xt+1 in the list 
4+1 registering k(Xt+1) in the list. 

Step 3. Iterating 
3.1. If the list L t+ 1 is empty the optimum is already found; go to the step 4. 
3.2. Ifthe list is not empty, reorder it for non diminishing value f(Xt+1)' 
3.3. Do t=t+1, go to the step 1. 

Step 4. Reconstructing tbe soIution. 
4.1. Ifthe best solution saved is the initial, we have the complete sequence. 
4.2. Otherwise, we have the last generated vertex Xi of the optimum path. The 
path fram O to Xt is obtained fram the precedent ones fram those generated 
vertices kept in the list 4, 4-1> .... , the path from Xi ,to U is the corresponding to 
the calculation of the bound. " ' 

" 

The syrnmetry can limit the number of vertices and levels to explore. If T is even, there 
will be pairs of vertices (perhaps confused in only one) in't=T/2 that define an optimum 
subpath (fram Q to T/2) and its optimum pralongation. They will be those pairs such that 
X + Y = U (O'.X = O'.Y = T/2). Such vertices can be eliminated fram LT/2 updating, if 
it is necessary, the value zQ. 

In the case of odd T such pairs of vertices will be found one in the level (T+1)/2 and 
another one in the (T-1)12 being demanded also in such case X+Y = U (O'. X = (T+1)/2; 
O'.Y = (T-l)l2) as a condition for matching. The vertex X can be eliminated fram 
L(T + 1)/2 updating, if it is necessary, the value of zQ. 

The rule 4, as an artificial order is imposed among the elements of a family and several 
equivalent vertices are reduced, by such fact, to a single vertex, can compel to analyse 
the different equivalencies to reach the matching of vertices. Moreover, a tie using rule 
1 (equality of the condition) may have eliminated the complementary vertex of a given 
vertex. 

13. COMPUTATIONAL EXPERIENCE. 

We have applied the algorithm to several blocks of problems with quadratic discrepancy 
function and in table 1 sorne meaningful results are indicated: 
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TABLE 1: NUMBER OF OPTIMUMS 
P T Amount of Hl H2 DC H2.5 AH 

Instances 
4 45 672 422 595 485 645 657 

450 598 490 662 665 
5 55 3765 1365 2846 2261 3427 3514 

1668 2878 2336 3504 3565 
6 80 49342 10495 25580 18307 38306 39816 

13034 26025 20093 40088 41118 

The number of instances for each P and T values corresponds to different combinations 
for P positive integers whose sum is T. 

In the upper part of the cell, we indicate the amount of optimums obtained with the 1-
step heuristic (Hl), the 2-step one (H2) , that present~d by Ding and Cheng (DC) and 
that proposed in section 10 (H2.5). In the lower part of the cell, we also indicate the 
amount of optimums reached by such heuristics filtering. candidates by means of the 
rules. In the "all" column, there is the amount of optimums reached by the best heuristic, 
without filtering and using the rules (upper part of the cell), and by the set of the eight 
heuristics (lower part of the cell). The algorithm proposed in section 12 (BDP) reaches 
a11 the optimums and has been used to contrast results. 

It can be observed the progressive degradation in the quality of the heuristic when the 
dimension ofthe problems increases. . . 

In table 2, we provide an idea of times corresponding to thé eight heuristics and to the 
BDP algorithm obtained with a 486 PC, 66 MHz. The heUJ"!stics have been prograriuned 
in the optimised form indicated in the present text. Time for the BDP algorithm does not 
take into account that to determine the initial solution (for this purpose, the heuristic DC 
without filtering has been used). 

TABLE 2: MEAN UNITARY TIME (seconds/instance) 
P T Number of Unit time Unit time Unit time Unit time Unit time 

instances Hl H2 DC H2.5 BDP 
4 45 672 .0105 .0236 .0157 .0424 1.7347 

.0150 .0307 .0269 .0486 
5 55 3765 .0150 .0399 .0217 .0764 3.5171 

.0253 .0524 .0524 .0824 
6 80 49342 .0270 .0761 .0385 .1515 8.4693 

.0476 .1018 .0828 .1630 

An important feature for the BDP algorithm is the window width H, which corresponds 
to the maximum amount of vertices held by the algorithm at sorne levels (defined for the 
t value). In this table, the maximum value of the window width used in the resolution of 
sorne instances is indicated, as well as the average value taking into account the number 
of instances in the block. It can be observed the moderate growth of that, related to the 
progressive degradation in the quality of the initial solution. 
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TABLE 3: NECESSARY WINDOW WIDTH IN THE BDP ALGORITHM 
P T number of Hmax Hav 

instances 
4 45 672 5 1.5878 
5 55 3765 9 2.0173 
6 80 49342 19 3.7812 

14. CONCLUSIONS. 

We have presented a formalisation for the PRV problem, several heuristic and an exact 
procedures to determine the optimum solution, providing computational experience. 

Taking consideration of the foregoing, it seems to that a good heuristic algorithm is the 
H2.5 combined with the candidates filtering by means of the rules. Using the solution 
provided by such algorithm to start the application of BDP can contribute significantly 
to reduce the necessary window width to reach the optimum solution (or to prove the 
initial is the optimum), and therefore, to reduce the necessary time for such algorithm. 
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