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RESOLUTION OF THE PRV PROBLEM

for J. BAUTISTA, R. COMPANYS and A. COROMINAS
DEPARTAMENT D'ORGANITZACIO D'EMPRESES
UNIVERSITAT POLITECNICA DE CATALUNYA

SUMMARY: Sequencing units that go along a production or assembly line, with the
objective of attenuating the variations in the rates of resource consumption is a problem
that has received growing attention during the last years. In the present work a particular
case is analysed, the PRV problem (product rate variation) with convex and
symmetrical function of discrepancy, the equivalence with the -determination of a
minimal path in a graph is shown and properties that must satisfy an optimum path are
established. Such properties can be used to improve the various heuristic procedures
efficiency and an exact procedure based on the BDP (bounded dynamic programming).
Supposing the discrepancy function will be quadratic, quite usual consideration in the
literature, some of the properties can be expressed in a more restrictive form, that
increases the efficiency of the procedures at the same time. The results of a short
computational experience are included.

KEY WORDS: Just-in-time production systems, sequenging, mixed-model assembly
lines. 3

1. INTRODUCTION ' ety

In mixed asSembly production lines, all the units are not identical. All of them have a
certain degree of similarity but they can vary in different aspects that influence the
consumption of such unit resources (load the workstations and/or components
consumption). The sequence of the units with the objective of attenuating the variations
of the rates of resources consumption is a problem that has received attention during
many years and acquired more relief in the literature since 1983 on account of its
relationship with the JIT concepts.

Kubiak (1993) pfesented an interesting description of the state of the art, in which he
classified the sequence problems in the indicated context in two categories: PRV and
ORV (a more detailed classification can be found in Bautista, Companys and
Corominas, 19964d).

In the problem PRV (product rate variation) the established objective is the
minimization of the rate variation, in which the different products can be in any segment
of the sequence. The problem was presented by Miltenburg (1989) and studied by
Miltenburg, Steiner and Yeomans (1990), Sumichrast and Russell (1990), Kubiak and
Sethi (1991), Inman and Bulfin (1991), Bautista, Companys and Corominas (1992),
Steiner and Yeomans (1993), Ding and Cheng (1993a and b), Bautista, Companys and
Corominas (1993), Kubiak and Sethi (1994), Yeomans (1994) and Bautista, Companys

‘and Corominas (1994, 1995, 1996b and c), Cheng and Ding (1996) and Bautista,

Companys and Corominas (1997), among others.




The problem of the regularity of the consumption of components was formalized by
Monden (1983) and called ORV (output rate variation) by Kubiak (1993). It has been
studied by Miltenburg and Sinnamon (1989), Miltenburg and Goldstein (1991), Bautista
(1993), Bautista, Companys and Corominas (1995 and 1996a), Duplaga, Hahn and Hur
(1996), and Steiner and Yeomans (1996), among others.

This work is centered in the PRV problem that is formally presented in the section 2. In
section 3 we show the correspondence between the problem and the search of a minimal
path in a graph. Relaxing a condition, the continuity constraint, the problem has a trivial
solution that is analyzed in section 4. After demonstrating a property that can permit, in
some cases, the reduction of a PRV problem to other simpler ones (section 5) of the
same type, we analyze the path generation in the graph, specially in those which the
optimum path can be found between them (sections 6 to 9). In section 10 we propose a
heuristic algorithm that provides good results and in section 11 there are some
modifications for the constructive algorithms in order to improve the efficiency. In
section 12 we propose an exact algorithm providing some computational experience,
obtained using heuristic and exact algorithms in section 13. The work ends with some
conclusions and the bibliography.

2. FORMULATION OF THE PROBLEM.

s

The traditional formulation of the PRV problem is the. followmg units of P different
products have to be sequenced in a production or assembly line; the number of units to
of the product i to sequence is uj (i=1,2,...,P). The total units to be sequenced are T:

&, .
B

The positions in the sequence will be indicated by the index t (t=1,2,...,T) on account of
the implicit supposition of the fact that all the units circulate at a constant speed in the
line. The ideal or mean rate of the product i in the sequence is rj (i=1,2,..,P):

Ui
ri=—

T

To define the position of the units in a sequence, we will present the values x;
(i=1,2,..,P; t=1,2,..T) correspond to the number of units of the product i sequenced
between the positions 1 and t (both inclusive). For the shake of coherence, we will
establish Xi,0= 0 (i=1,2,...,P).

For any value of t, the ideal number of sequenced units for the product i between the
positions 1 and t would be t.rj, while the real value for a sequence is Xj ts it seems to be
useful to measure the non-regularity of the sequence through a distance between both
sets of values. A quadratic distance is usually used, so the formulation of the search for
the optimum sequence can be formulated as: :




[MIN] SDQ = ii (X - t.17)°? (01)

t=1 i=l

s. t.:
P
Y xe=t  (t=12,...P) (02)
i=l
0< Xig-Xieq <1 (=1,2,..P; t=1,2,...7T) (03)
Xi S (=1,2,...,P; t=1,2,....,T) (04)
Xit=0andinteger  (i=1,2,..,P; t=1,2,....T) (05)

The constraints (04) and (05) define the values xj  as non negative integer not higher
than u; and the constraint (02) that the total number of sequenced units between the
positions 1 and t is exactly equal to t. The constraints (03), which can be designated as
continuity constraints, impose that the sequenced units until the position t include the
sequenced ones up to the position t-1; this implies, combined with (02) and (05), that
the values x; ¢ will be all equal to X; t.1 except one that ig fa‘unit greater (the one which
corresponds to the product i sequenced in the posmon t) Strictly, it would not be
necessary to impose in (03) that the difference was not be: hlgher than one, as this fact
already is implied by the set of constraints. The obJectlve functions (01) measures the
quadratic discrepancy between the real and the ideal Values it is, though, an index of
non-regularity in the sequence. Its minimization leads to "find a sequence whose index
will be as low as possible and consequently, the discrepancies will be globally low. "

Many of the properties we will expose below admit the measurement of the
discrepancies through expressions not necessarily quadratic; in that case, we will
substitute the objective function by:

[MIN] SDF = ii (X - t17) (06)

t=1 i=l

where we will impose ¢ is a real convex (strictly), symmetrical function of real variable
and takes the value O at the O point:

A.o(ag) + (1-A).0(0) > (Ao + (1-A).cp) toallayp#0p; O<A <1
o(0) = p(-0) to all o

¢(0)=0

Many properties of the optimum sequence according to SDF we will describe below
require only the convexity of ¢. In the established form ¢ is a function that grows for o
> 0 and decreases for 0. < 0, with a minimal value for o= 0. A property of @ that we will
use extensively is the following: .




PROPERTY P: Given a function @, according to the defined type, and four points o,
09, 03 and 04 such that:

0 -0]=04-03

"and that:

o] <0p <0y
it is fulfilled that:

o(og) +0(0g) > 9(02) + (0i3)
Indeed, it is deduced from the conditions that also:

0] <03<04

therefore, it exists a value of A (0 < A< 1) such that:

Ao + (1-A).04 = ocz .
(1-A).01 + Aoy =

SO

G

A0(a) + (1-1).9(04) > 9(0)

(1-1).9(01) + A.9(04) > @(03)
and the wished expression is obtained adding both inequalities.

It can be observed that we have not fixed the relative position between o and o3 (it can
be oy > 013, 0 < 013 Or O = 0.3).

(If the function ¢ was not be strictly convex, such as ¢(o)=|oj, the below general
conclusions would be applicable though the number of cases with possible nonchalance
or tie would be higher; for example, in the formulation of the property P the sign >
would have to be substituted for ).

Other reasonable forms to measure the non-regularity are possible, but those indicated
are the only considered in the present work.

In the below statements, given a sequence S, the index of non-regularity will be
designated either as SDQ(S) or SDF(S) according to the measuring form. The term of
the index corresponding to the position t (contribution of the position t) will be
designated as SDQ(S) or SDF(S):




SDQ(S) =

P
i=1

2
(Xig - t.x)

»
SDF(S) = D, o (xi¢-tx)

i=1

It can be observed that these contributions depend on t and on the values xj ¢, that is to
say, on the number of units sequenced between 1 and t for each product, but nor strictly
on how such units have been sequenced neither how the rest will be sequenced.
Consequently, if Xt whose components are Xj; is called the (P,1) vector, in many
occasions it will be more comfortable to write SDQ(X¢) and SDF;(Xy) than SDQ¢(S)
and SDF(S). Analogously, let a;; be:

Oit = Xj¢- LI
and oy , the (P,1) vector whose components are 0; ¢ . It can be written that:

ot = Xt -tr= Xt - I'.O,-Xt = (I -I'.O’).Xt = BXt

: (P
is the unit (P,P) matrix.

where r is a (P,1) vector whose components are rj, O 1
components equal to 1, O' is the transposed vector of O
Take into account that the constraint (02) is equivalent to: %
0'Xi=t <
and so: : ’ u

O.ou=t-t0’.r=0

which is equivalent to:

P

Y ;=0 for all t

i=1
The (P,P) matrix B is independent of t and the components are:
bi,j =-1; ifi#j fori=12,.P
bij=1-15 fori=1.2,.,P

| being fulfilled B.O =0, where U is the (P,1) vector of components u;.

L P
We will write @(0y4) instead of 2 ©(0i ). In the case of quadratic discrepancy:
i=1

SDQt(Xt) = OLt’O({ = (BXt),(BXt) = Xt’.A.Xt

,1) vector with all the.




i

where the matrix A = B'.B, independent of t, has components:

ai’j =d- T - I‘j if i?ﬁj for i,j =1,2,..P

ajj= d+1-2rx fori=1,2,....P
where:
P
d= z 2
i=1

The matrix A is symmetrical and semidefinided positive. It is fulfilled that:
U.A.U=0 sinceA.U=0

The use of a matrix scheme facilitates to obtain recursive expressions for the
computation of SDQy. Given a possible sequence S, with X¢1 = X¢ + Ij where Ij is the
i-th column of the unit matrix, what means a unit of the product i has been sequenced in
the position t+1 in the sequence :

SDQt+l = (Xt + Ii),'A'(Xt + Il) = SDQt + Ai, .X;';,i

where Aj is the i-th column of the matrix A and a; ; the elgment (i,i) of such diagonal
matrix. -5 :

Kubiak and Sethi (1991, 1994) demonstrated that if the &bjective function can be
represented as a sum of discrepancy measured through a non-negative, symmetrical and
convex function (such as @), the problem of searching an optimum sequence can be
reduced to an assignment problem. Bautista, Companys and Corominas (1994)
generalized the procedure for different families of objective functions. But this approach
will not be treated in the present work.

|

T

e

3. A GRAPH ASSOCIATED WITH THE PRV PROBLEM.

A multistage graph with T+1 levels can be associated to any given PRV problem. At
level t (t=0,1,...,T) the vertices correspond to all combinations of non-negative integers
whose sum is t and such that the i-th addend is not higher than uj, that is to say, vectors
X that satisfy the conditions:

0.X=t
0<X<U .
X has integer components
which can be seen as a rewriting of the constraints (02), (04) and (05). Therefore, the

vertices of level t correspond to vertices X¢ which are feasible for the PRV problem. At
level 0, there is a single vertex, corresponding to the (P,1) vector 0 with all components




equal to O, and at level T, a single vertex corresponding to the vector U. Given the
correspondence between vectors and vertices, we will designate these with the same
symbol that the vector. Between a vertex X at the level (t-1) and another Y at the level t,
" an arch will exist if:

X<Y

whose correspondence with the constraint (03) is obvious. The arch joins a vertex with
one of the possible following ones in a sequence. Consequently, any path from the
initial vertex 0 to the final one U is associated with a possible sequence of the units in
the PRV problem.

In each vertex Xt a value corresponding to the discrepancy function ¢(oy) will be
associated; in the vertices 0 and U such value will be zero: ©(0) = @(U) = 0. The length
of a path in the graph will be the sum of the values associated to the vertices of a path
which goes through and such length will be the SDF value of the associated sequence.
The problem of seeking a sequence that minimizes SDF is reduced to the problem of
seeking a path with minimal length in the graph, which can be solved with any of the
efficient algorithms for this problem

The difficulty is obvious; yet with moderate values of. N

d uj, the | graph can reach
boundless dimensions. The number of vertices in the graph‘is:

P - "
IT w+D P
i=1 K

and the number of different paths:

T!

uil.u2l...up!

and though the algorithms do not compel to list all the paths, they lead to evaluate all the
vertices, what can be prohibitive.

A property of the graph is the symmetry: the number of vertices at levels t and T-t is the
same. On the other hand, if ¢ is symmetrical, a vertex at the level T-t corresponds to a
vertex at the level t with the same associated value. Particularly, the vertices which
accomplish this property are those such that:

X+Y=U
indeed:

B.X+Y)=B.U=0

and the symmetry of ¢ implies that ¢(B.Y) = ¢(-B.X) = ¢(B.X).




e ARCPE T PRV T R R

The levels with greater number of vertices are T/2, if T is even, and (T-1)/2 and (T+1)/2,
if T is odd (in this last case, these two referred levels have the same number of vertices).

Given an optimum path from 0 to U, corresponding to an optimum sequence S, if @ is
symmetrical, the inverse sequence S‘l, that is to say, that sequences a unit of the product
in t that S sequences in (T-t+1) for all t, it is also an optimum sequence. Both sequences
may be identical, but this cannot happen if T is even and some odd value u; exists or if T
is odd and more than one odd value uj exists. So, as a rule, more than one optimum
sequence will exist.

4. MINIMIZATION OF SDF¢

A first issue with a simple answer is to determine the vertex at the level t whose
associated value will be smaller, that is to say, to solve.the problem:

[MIN] ()

s.t.:
a= X - t Jx

0.X=t

iy

0 <X<U andinteger corrippi_ments Xy
| | I
The constraints are the same of the original problem except that one about continuity,
without having meaning in this context, and we have omitted the subscript t in order to
be simpler.

It can be observed that given the previous conditions, as it has been already indicated in
section 2:

0.a=0X-t0r=0

therefore, the sum of values @ is zero in a feasible solution. We are going to establish
several results that allow us to define an algorithm to calculate the optimum values Xxj.

LEMMA 1: Given 0, an optimum solution of the problem, two of the components oy
and 0y, associated to the values x; and x;, such that 0 <x; and x; <uj should fulfil:

o-05<1
Indeed, if it would not be thus and o - oy > 1, then by means of the property P:
o(0rp) + @(0) > oo - 1) + ooy + 1)

and o - 1 and o; +1 define, with the rest of the och components in the previous solution,
a new feasible solution of the problem (they guarantee the integrity, non-negativity and




that neither xj nor x; do not exceed their respective upper bounds, without altering their
sum) whose value of the objective function is better, what contradicts the hypothesis
that o and o belong to an optimum solution.

Let us go to consider the integer and the fractional part of the values t.r; > 0:
tr1 e +qj with e; 20 and integer; 0 < g; < 1
LEMMA 2: If q; = 0, then x; = ei and o = 0 in the optimum solution.

Indeed, if it would not be thus, xj; = e; + 1 or Xj < ej-1. In the first case, o = xj-¢; = 1,
and since the sum of the oy (h=1,2,...P) must be zero, there is a product j with o; < 0; in
such case, o - 04 > 1 stands in contradiction with lemma 1 (since it is possible a
solution xj 2 1 and xj < t.rj < u;). Analogously, contrad1ct10n could be obtained in the
second case.

LEMMA 3. If q; > 0, then x; = ¢; (0 = -qp) or Xj = ¢; + 1 (¢ = 1-qj) in the optimum
solution.

IV

Indeed, if it would not be thus and x ; = ¢j + 2, then ¢
given in lemma 2 could be reiterate. Analogously, in case

.- q ;> 1 and the argument

LEMMA 4. If q; > g and xj = ¢; +1 in the optimum sol'uffah, Xj= e.i4+ 1 is also.

In effect, if we had x; = ej + 1 and xj = e;, that is to say, ’oc_] = 1-gj and o4 = -qj, then it
would happen that: .

o-0p=1-gj+qgj>1
against what was established in lemma 1.

Consequently, the procedure of the largest fractions (LF) proposed by Alexander
Hamilton in 1791 for the apportionment seats at the Congress of the States of the Union
can be used to determine the optimum values x;.

LF ALGORITHM:

Step 1: For each product i, t.rj = € + q; is determined.
Initially, e; units (x; = e;) are assigned to each product i.

P
s=t- 2 e; is calculated.

i=l1

Step 2: While s >0
Determine a value for i that gj is maximum (ties can be solved

arbitrarily).
Doxj=xj+1,8s=s5-1,q=qj-1
End while




Consequently, in the original PRV problem, for each value t we can determine a vertex
X¢H whose associated contribution ¢ H is the minimal contribution at the level t. If a
path that goes through the vertices X¢* exist in the graph, that path is associated to an

T
optimum sequence of the PRV problem with value BH = z (ptH .Unfortunately, it is
t=1
not guaranteed that the successive values XtH satisfy the continuity constraint (03) and,
therefore, an arch connecting them may not exist. This fact can be increased by the
multiplicity of solutions for some values of t (and then, depend on the form of solving
ties), but it is intrinsic to the problem and it can be produced yet taking into account all
the solutions and all the optimum vertex couples at t-1 and at t. It corresponds to the fact
that LF is not "house monotone" and the appearance of such phenomenon is due to the
called paradox of Alabama. In any case, BH is a good lower bound for the SDF value in
the optimum sequence. )

To deal with some aspects that will be used below, it is convenient to study a problem
derived from the previous one:

[MIN] ()
s.t.:

og=X-a

0'X=1
b <X<U and integer componens x;

That is to say, we consider X is lower bounded by a vector b, and we consider the
possible difference between O'.a and t. We will suppose that:

b >0 and with integer components; Q. b=w
a=20, O.a=s
O'.U=T, 0<1<T,7, T and integer U components

We will also consider w <t (if w > 1, the problem has not solution, and if w = T, the
solution is trivial, X = b).

0O.a=0'X-0.a=1-5s

That is to say, the sum of oy in a feasible solution is equal to a constant. In these
conditions, the adjustment of the lemma 1 would be the following:

LEMMA 5: In an optimum solution of the previous problem two values o and o,
associated to the values x; and X;, such that bj < xj and X; <uj, have to fulfil:

o - 05 <1

10
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The demonstration is analogous to that accomplished in lemma 1.

Consequently, it will be applicable an adjustment in the LF algorithm after classifying
all i values in two classes: J referred to the variables conditioned by the lower bound,
and J1, referred to the no conditioned ones. The set Jg can be empty.

LF_2 ALGORITHM:

Step 1. Determination of Jg and J{ i
Tnitially:

. T— 0.
To={ila+ —P—S<bi} h={iliel}

If Jg is empty, do P; =P; 7] =T and s] = . Go to the step 2. u }'f

Otherwise, we call P1 to the number of elements in J1 and

sl=2 a; ; 'cl=’c-z b;

ie1 ieJo

While there is i € J such that a; + TIP— < b;, do:
1 e )
Add i to Jp; eliminate i from J; and update Py, 51 andt]
End while. T Ao

'9.:

Step 2: Determination of x;:
Ifie Jg, thenx; =b;

Apply the LF algorithm to determine the values x; such that i € J1, distributing ©
1 instead of t, and using for the determination of e; and qj, instead of t.rj, the
values: :

T — §1
P

which are not negative and whose sum is equal to 77.

The demonstration that the algorithm leads to the optimum solution is a repetition of the
already indicated arguments. It is sufficient to add that if Jg is not empty:

T—S T1— S1
>
P P

The second member is reduced each time we withdraw an element of J and join it into
Jo, what justifies that the elements incorporated to J( are not reconsidered in the step 1
of the algorithm, and on the other hand those belonging to J; are considered.

11




In this section, we have only used the convexity of the function @; therefore, they are
valid though ¢ is symmetrical.

5. CYCLIC SEQUENCES.

First we will propose the following lemma:

LEMMA 6: An optimum solution S for the PRV problem with the objective function
(06) and the constraints (02), (03) and (05) will fulfil the constraint (04) (that is to say, it
is not necessary to impose the constraint (04) explicitly).

Indeed, if constraints (04) were not be fulfilled in this way a product i such that X; T > uj
would exist in S. Let us call S a sequence though it would not be for the original
problem. Let t] be the first position in the sequence S in which xj ¢ is higher than uj,
then for any value of t, ty <t < T, a product j such that 05 ¢ < 0 (not necessarily the same
for different t) exists. Indeed:

ojt2uj+1-tr21

and as the sum according to h of the oy, ¢ is zero for any t vaflue the result is deduced.
Let us construct a sequence S ' that coincides with S from thc position 1 to ti-1, and
such that from the position tj has a unit less of product i such unit is moved to a
product j whose 0yt will be negative (this corresponds to sequence a unit of j instead of
a unit of i in the position t] of S' as it is made in S). In the following positions to t{ and
while a j unit will be not sequenced in S, we do the same movement. If in the position ty
>t1 aj unit is sequenced in S, we analyze once again the sittation choosing eventually a
product j' with negative o' ¢ as recejver of the movement (what corresponds to sequence
in the position tp of S' a 3’ unit instead of the j unit sequenced in S and that it has been
advanced to the position t]). We continue in this way until reaching the position T.

For any position t such that t{ <t < T the SDF; value is smaller in S' than in S, since the
accomplished changes have been centered in products i and j such that:

G t - 04t 21- oyt > 1
and the improvement remains established by lemma 1 and the proposition P. So:
SDQ(S) > SDQ(S")
and S' is a sequence that satisfies (02), (03) and (05), in which product i takes the value
uj in the position T or surpasses it in a unit less than S. Consequently, S cannot be an
optimum solution in the conditions of the statement.
The previous procedure can be used systematically to transform a sequence S that

satisfies (02), (03) and (05) but not (04) into another that satisfies the four constraints
with a lower SDQ value (the transformed sequence is not necessarily optimum).

12




This result only requires the convexity of @.

THEOREM 1: If the greatest common divisor of the values uj is m > 1, an optimum
sequence of the problem can be obtained repeating m times an optimum sequence of the
reduced problem with a number of units for the product i in the sequence equal to u;/m
(i=1,2,...,P) and a total number of units in the sequence equal to T/m.

Substantially we are postulating that in an optimum sequence is fulfilled that:
04t = Oforalli=1,2,..,Pand t=T/m, 2.T/m, ....., (m-1).T/m

We will demonstrate the theorem for m=2. Let S be an optimum sequence we suppose
that all the values o; T/2 are not annulled in T/2. We can decompose the sequence S in
two segments S1 and Sp, the former corresponding to the positions between 1 and T/2
and the latter, between T/2+1 and T. The concatenation of S and S7 leads to S, and we
will write S1* S9 = S.

According to what was established in lemma 6, the sequence S can be transformed into
the S1' with the values o; T/ = O, considering the reduced problem, which is obtained
dividing by two the total number of units for each product to be sequenced. We can
easily observe the original values rj are identical than those of the reduced problem.

We can also transform the sequence S7 into the So' using the- symmetry of the problem
(that is to say, inverting the sequence and considering the sequence of T/2 units). The
two sequences can be concatenated since, for each product, half of the total units in Sy’
and the other half So' have been sequenced. S'=S1' * Sy’ is a possible sequence for the
original problem and its SDF value is better than that corresponding to S, since the
accomplished transformations improve systematically the values in the reduced
problems; and the contribution in T/2, common to both subsequences considering the
reduced problems and the inverse of one of them, it is zero and does not produce
“distortion in the global SDF value. Consequently, S cannot be optimum.

Since the same number of units for each product is sequenced between the positions 1
and T/2 and between T/2 + 1 and T, an optimum subsequence for the first section is also
optimum for the second one.

For m > 2, the demonstration can be accomplished using an induction procedure.

The above demonstration of the theorem requires the ¢ symmetry in addition to ¢
convexity (in “Note on cyclic sequences in the PRV problem” we show this theorem
with ¢ functions).

Therefore, in practical applications we can suppose the values uj are prime numbers; in
~ the opposite way, the resolution of the original problem can be reduced to another with
smaller dimension, and much simpler.

13
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6. PATH GENERATION IN THE GRAPH.

The determination of the optimum path in the graph can be done with one of the usual
procedures, for example through dynamic programming. Let G-1 Xt be the set of the
vertices at the level t-1 immediately previous to the vertex Xy at the level t, and let us
call f(X¢) the length of the minimal path from the vertex 0 to the vertex X¢, we can
write:

f(X) = min { fXe1) + 0X¢ -tx) | X € G1X, } toall X;=0
with
f0)=0

This scheme can be applied to functions ¢ much more general that those indicated and
coincides with the scheme proposed by Miltenburg, Steiner and Yeomans (1990). If it is
necessary to evaluate all the vertices of all the levels, the volume of calculations and the
amount of memory can become unattainable.

An alternative consists of limiting the search to a satisfactory sequence though not
necessarily an optimum one. The sequence or path is copstructed progressively, and
once a vertex has been added to the path, only the immediate following vertices are
evaluated, and the best one is added to the path, and so on: Given a time moment, if the
path built goes from 0 to X, the following vertex to be added will be; -

-

argmin { X1 - t+1D).r) | Xeye GX¢ ) t<T-1
where G X is the set of X¢ immediate following vertices.

This procedure coincides formally with the designated "goal chasing" proposed by
Monden (1983) for the ORV problem and with the heuristic 1 proposed by Miltenburg
(1989). For a quadratic discrepancy function, this heuristic leads to sequence in t + 1 the
product i such that:

Xjt - (o with xj¢<uy;
takes the lower value.
Several authors have discovered, from computational experience the behaviour of this
heuristic is not very efficient because of its short view character, that is to say, due to
units are sequenced in a position without taking into account the effects caused in the
following positions. A way of reducing the “short sight” is to consider the contribution

of more than one arc in the prolongation of the path from a vertex Xg¢.

If we consider two arcs, we will add to the built path from 0 to Xy the vertex X¢41 such
that:
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argmin {Q(Xgyq - (t+1).r) + min {Xiiz - (t+2).1)} | Xp € G X Xz € G X}
fort<T-2

This procedure, significantly more efficient than the previous one, coincides formally
with the heuristic 2 (two-step heuristic) proposed by Miltenburg (1989). For a quadratic
discrepancy function this heuristic leads to sequence in the position t+1 the product i
with the minimal value s(i), where:

s(1) = 81(i) + min; { sa(i.j) }

81(1) = 2.x4¢ - (2.t43).1 ifxe <y

s1(1) =0 ifx =y

s2(1,j) = X1 - (t42).15 ifi#j and xje<uy;
S2(ii) =1 +x¢- (t+2).1y fxe<uy-1

So(i,j) = o0 in the other cases

the expression s(i) corresponds, unless constant values, to the differential contribution to
SDQ¢+1 and SDQH.Z produced by sequencing an i unit in t+1 and a j unit in t+2, The
product j (that can coincide with the product i) is determined dependmg on 1 to reach the
possible smaller contribution to SDQy42. : »

Only the product i, that minimizes s(i), is sequenced in the position t+1, and the
calculation is repeated from such position; therefore, it is very possible that a product
different from j is sequenced in the position t+2 (or from i, if the minimum of sy(i,j) has
coincided with s9(i,i)). '

Ding and Cheng (1993a and b) accomplish an adjustment to the previous expressions
and determine initially a product i that minimizes: s1(i), and in function of the same
product they proceed to choose j (that can coincide with i) minimizing s9(i,j).

If the two products are different, they prove that sequencing i in t+1 and j in t42 is better
than using the opposite order (employing the property O presented in section 8). Their
heuristic is faster than the 2-step one and gives also good results. Ding and Cheng assure
that the procedure is a 2-step heuristic but the affirmation is denied by the computational
experience. In fact, Ding and Cheng provide a demonstration that finishes with a wrong
conclusion as Bautista, Companys and Corominas (1996b) have shown.

In section 4 we have shown that a vertex XtH at each level that minimizes the value ¢@(
t) can be very simply determined. If such vertices define a path from 0 to U, that path is
optimum; otherwise, paradoxes will be produced. The heuristic only will be necessary to
correct the deviations with respect to a path of the vertex succession XtH, that is to say,
to avoid the paradoxes.

In the generation of the vertices XtH, it will be convenient to avoid the untruthful
paradoxes produced by ties adopting adapted rules to solve them (for example, ordering
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the products by non-increasing rj and using this order as priority to solve earlier ties). In
case of paradox, that is to say, in case between XtH and Xt+1H does not exist an arc, it
will be sufficient to apply the heuristic from t, if a 1-step heuristic is considered, or from
t-1, if it is a 2-step heuristic. '

The approach of the exact algorithm we present in section 12 consists of evaluating
progressively at each level, calculating the minimal path from 0, those vertices of the
graph through which, according to the available information, an optimum path from 0 to
U can go by.




7. OPTIMUM PROLONGATION FROM A VERTEX

As the values assigned to the graph are associated to the vertices, one must be cautious
when subpaths have to be joined together so as not to add twice the contribution of a
given vertex. Given a vertex X at the level t, a prolongation from the vertex X is called a
path from a vertex Y at the level t+1 up to U such that: Y is an immediate following
vertex to X (there is an arc from X to Y). The length of the path from Y to U is called
the length of the prolongation. Among all the prolongation paths from X, the optimum
will be considered one of minimal length, and such length will be the distance from X to
U.

If an optimum sequence from 0 to U goes through X, the SDF value will be equal to the
minimal length of a path from 0 to X added to the distance from X to U. The same
difficulties, indicated previously, are found to determine the distance from X at level t to
U, but it is simple to determine a lower bound for the length using the LF-2 algorithm
with the values T = t+1, t+2, ..., , where in this case:

aj = TIj and bj=xjt

Let XK be the obtained vertices (they will coincide with X"L‘H from a certain value of 7,
at least for the T values such that X¢ < 7.r), the bound, that we will call k(X¢), will be:

T T
kXo= Y (o) .
T=t+1

If a paradox does not happen in the calculation of the er that is to say, the XK

determine a path of the graph from X¢ to U; such path is an optimum prolongation and
k(X¢) is the length of such prolongation. '

In the course of the procedure proposed, the length of a minimal path from 0 to X will
be determined and f(X¢) will be obtained. Therefore, f(X;) + k(X¢) is a lower bound of
the length for the paths from 0 to U that go through X¢. If a path between 0 and U with
value z( has been determined by an heuristic, the vertex X¢ can be removed from
subsequent considerations if:

Xy +kXp) 2z

as no path between 0 and U that goes through Xt can improve the solution we already
have.

If paradox does not exist in the prolongation, we have determined in fact a minimal path
from 0 to U that goes through Xj. If: g

fXp +kXyp) <z

we will have a new solution, better than the previous one, and therefore zgp will be
updated and also X¢ will be removed since we know all the consequent results.
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8. RULES TO CONSTRUCT OPTIMUM PROLONGATIONS.

If a paradox happens in the calculation of k(Xy) we cannot have the optimum
prolongation from X¢. The objective of the rules stated below is to eliminate those
vertices that cannot form part of an optimum prolongation as the following ones from
Xt (at least, at level t+1). And, in such case, those vertices by which a prolongation,
better than that one which additionally held vertices, cannot go. There are substantially
two rules:

RULE 1. If rj > 1j and xj¢ - Xjt £ (1 - 1).(t+1), we can get rid of Xy + Ij in the
prolongation paths from X¢

RULE 2: Ifrj = 1j and x1 t - Xj,t <0, we can get rid of X¢ + Ij in the prolongation paths
from Xj.

We are going to develop the demonstration in different stages.

PROPERTY O: If the optimum prolongation from X¢ has a unit of product j in t+1 and
a unit of product i in t+2:

Xit - Xjt 2 (- 1).(t+1)
is fulfilled.
Indeed, if the prolongation is optimum the value will be lowér or equal to that of the
identical prolongation in all the positions T > t+2 but i is sequenced in t+1 and j in t+2.

The lengths of both prolongation paths only defer in the contribution of the position t+1
and it must be fulfilled, therefore:

(p(ait-ri)+<p(ocjt+l-rj)-cp(ait+l-ri)-cp(ocjt-rj)so

where 0 t = Xj t - t.rj and 4.t = Xj ¢ - t.rj. According to the proposmon P or the lemma
1, it is necessary that:

(ot +1-15)-(0t-rp<1
that coincides with the indicated condition.
If:

Xit - Xt =@ - 5(t+])

both prolongation paths have the same length and the order for i and j in the positions
t+1 and t+2 is indifferent.

On the other hand, if:

Xit - Xjt <(rp -1 (t+1)
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a unit of j in t+1 and a unit of i in t+2 will not be sequenced in the optimum
prolongation. When rj > I the result can be even stronger:

THEOREM 2: If rj > rj and Xj ¢ - Xj ¢ < (rj - 17).(t+1) is fulfilled in t (t<T), there is no
optimum prolongation from X¢ in which a unit of j is sequenced before a unit of i.

Indeed, we suppose Xt < uj, otherwise the conclusion would be obvious. In these
conditions, it will also be fulfilled that x; < uj, since

Xje < Xjt + (r; - I'j)(t+1) <y + (o - Uj) =

We suppose the conclusion is not fulfilled and, in an optimum prolongation G, a unit of i
is sequenced in tq (t]>t+1), and before, a unit of j has been sequenced in ty (t+1 < tp <

t1). If more than one unit of j is sequenced between t and ty, tp corresponds to the latter.

For any T such thatty <t<t1-1:

X, T=Xjt XjT2xjt+1
is fulfilled. )
Therefore: ‘
0 T=Xjt-TIj
G T2Xjt+1-1r; .
and then: .

G- O < Xi - Xt - 1- T.(I'i - I'j) < Xt - Xt -1- (t+1).(1'i - I'J) < -1

So, the prolongation o', identical to the previous one except for ty < T < t1-1 obtained
from ¢ sequencing i in tp and j in t1, would contribute less in such positions and equal
in any other. Therefore, the prolongation ¢ was not optimum.

COROLLARY L Ifrj >rjand xj ¢ - X5t = (15 - 1j)-(t+1) is fulfilled in t (t <T) and there
is an optimum prolongation from X¢ , G, in which a unit of product j is sequenced before
a unit of product i, there is another ¢’ also optimum in which the opposite case happens.

Indeed, so as to be optimum the prolongation o, added to the integrity of (rj - rj).(t+1),
we need that, using the previous notation, t] =t + 1 and ty = t + 2; so any 7T value,
strictly greater than t + 1, does not exist. According to the property O, if we exchange i

and j, we can obtain a prolongation ¢' with the same value, and therefore it is also
optimum. ‘

COROLLARY 2: If rj > Ij in an optimum sequence, it is fulfilled for all t = 1, 2,...,T
that: '

(a) Xit 2 Xjt
(b) Ui - Xit 20 - X
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Indeed, initially x; 0 = Xj,0=0and 0 <7j - rj, s0 a unit of i will be sequenced before a
unit of j in any optimum prolongation from 0: the same situation is repeated each time
Xit = Xt in the sequence; therefore, (a) must be fulfilled. We obtain (b) using the
symmetry.

Therefore, a unit of a product i whose rate rj is maximum will be sequenced in the
position 1 of an optimum sequence (and also, in the position T). A product j with rate T
less than the maximum will be sequenced for the first time when at least a unit of each
one of the products with higher rate superior has been sequenced.

The theorem 2 and the corollary 1 justify the rule 1.

THEOREM 3: If 1; = 1j and Xj ¢ - Xt < 0 is fulfilled in t (t <T), there is no optimum
prolongation from Xt in which a unit of j is sequenced before a unit of i.

It must be considered that in this case (1j - rj).(t+1) =0, and let us also consider Xt < Uj
(the conclusion is obvious in the opposité case) and suppose there is an optimum

prolongation ¢ in which i has been sequenced in t] for the first time, and previously, j in -

ty,witht+ 1<ty <tj. Foranytsuchthatty <t<tq-I:

XiT=Xjt X, T2Xjt+ 41 4
is fulfilled.
Therefore: .
04 T=Xjt-TI ..
o T2X ¢+ 1.— TI
and then:

Oz = Or < Xig - Xje = 1 - Ty - 1) S Xy - Xje -1 < -1
and, therefore, ¢ cannot be optimum.
The situation of equality would have to consider that, if there is an optimum
prolongation with a unit of j sequenced before one of i from t, there is also some
optimum prolongation with the opposite situation. Nevertheless, distinguishing between
i and j is more embarrassing since rj = ;. In the following paragraph, we will introduce

the concept of family of products because of this fact.

COROLLARY 3: Ifrj = 5 in an optimum sequence and for all t = 1,2,...,T, Xi t and Xt
can only be different in a unit, that is to say:

Xj,t -1< Xi,t < Xj,t +1

The demonstration is analogous to that of corollary 2.
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In case of quadratic functions of discrepancy, some stronger results can be obtained.

LEMMA 8: If in an optimum sequence, with quadratic function of discrepancy, s units
of the product j are sequenced before a unit of the product i:

Xit - Xt 2 (1 - rJ').

is fulfilled, where t7 is the first subsequent position to t in which a unit of j is sequenced
and tg is that in which the first unit of i (t+1 <t < tg) is sequenced.

The demonstration is obtained constructing a sequence identical to the original one
except in the position t; where a unit of i is sequenced and the unit of j moved to tp and
imposing that the discrepancy of this sequence cannot be lower than the previous one.
The conclusion of the lemma is independent whether 1; is greater, lower or equal to 1.

" Forrj> 1j or rj =T the rules 1 and 2 can deduced from the lemma. In the case rj <rj and
considering the possibility of locating j in the position t+1, we obtain the following
result:

RULE 3: If the discrepancy function is quadratic, rj <1j , Xj t <uj and
L,

t+T+1
Xit - X5 < (11 - rj)-[——z-— - U + Xig]

it can get rid of X¢ + I in the pfoiongation paths from X.

We only need to take into account that xjt < uj in the conditions of the rule, and
furthermore: . :

t; =t+1
t+s+1<to<T-(ui-xX0) - (Uy-Xje-8)+1

1 <5< (u5-x50 - (Ui - Xi0)

and
s.(s=1) 50
2.(to—11)

9. FAMILIES OF PRODUCTS

Several products form part of a family F if they have the same"ui value, and
consequently, 1j. According to what was established if i,je F in an optimum sequence:

-ISXi,t-Xj,tS].
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will be fulfilled for all t (t = 1,2,...,T), that is to say, such products will be sequenced
homogeneously in the optimum sequence; until the first unit of all the products in the
family is not sequenced, the second of any of them will be sequenced, and so on. Let k
be the number of products in the family; t, the first position in which the unit a-th is
sequenced; and tp, the first position in which (a+1)-th of any is sequenced (it is not
necessary to sequence the same product in t; and tp). In the part of the sequence
between t] and ty-1, only a unit of each one of the products in the family has been
sequenced, and given the rj identity, the order in which this may happen is indifferent.
Given an optimum sequence

(khu -1

optimum sequences exchanging the products of the family sequenced in each part can be
obtained, being u the number of units for each product in the family. Consequently, we

can establish an arbitrary order between the products of the family, and consider only"

the sequences in which the units of the products in the family for each section are
sequenced in such order:

RULE 4: If i =17, Xj ¢ - Xj,t < 0 and 1 < we can get rid of X¢ + I; in the prolongation
paths from X¢. )

;
In case of functions with quadratic discrepancy, stronger conditions related to the
families can be established:

RULE 5: If the discrepancy function is quadratic, rj = 1) > ¥ and xj t > Xp t We can get
rid of Xt + I in the prolongation paths from Xj.

RULE 6. If the discrepancy function is quadratic, 1j > 1j, i belongs to a family with k
products in which all adopt the value xj y=aint, and

1+ %

)

a-XjS(r-n).(t+

we can get rid of X¢ + I in the prolongation paths from Xj.
The justification is found in the following results.

LEMMA 9: Let us consider a part of an optimum sequence with quadratic discrepancy
function, in which the (a+1)-th unit of the products in family F is sequenced between
two positions: when the first product of the family i takes the value xj t = a+1 and when
the last product of the family, h, is equal to xp ¢ = a+1 (a+1 < uj = up). If products that
do not belong to the family F are sequenced in such part, their rate is greater than that
for the products in the family.

Indeed, if it was not in this way, between sequencing two products of the family, that we
will call i and h, a product j such that rj <rj = 1, would be sequenced. Suppose that i is
sequenced in t1, jin tp and h in t3 with t{ <ty < t3. Suppose in order to simplify that a
unit of j is only sequenced between t{ and t3, that is the b+1 of such product.
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If the sequence is optimum, it cannot be improved exchanging i and j or of j and h in
the sequence, therefore:

t2-1
Y [(a+] - tr)*+ (b - T)* - (a- 1r)? - (b+1 - Tx)’1 <0
13-1

S [(a- ) + o+ - 1) - (at+] - ) - (b- T2 <0

T=t2
The first expression is equivalent to:

t+t2—1

2.(ty-t1).[a-b - —2—-— (ri-1))1<0
and the second one to:
2.(ts - t2).[b - 2 - iz—J"—;—_—l.(rj 1] <0

That is to say, since rj =13, "

+ —
a-b< Rildiial (ti-17)
: 2
t2+1t5—1 :
a-bz ———2————.(ri-rj) X

But, as t] + tp < t9 + t3, the foregoing statement stands as a contradiction.
This lemma is applicable to the optimum prolongation paths from a vertex Xg.

THEOREM 4: If the k products in a family F have reached the same value x; ¢ = a, i€F,
in X, another product j with lower rate, rj > T, with the value Xyt and it is fulfilled that:

1+k
a-Xt< (1 - I‘j).(t +

)

There is no optimum prolongation from X¢ in which a unit of j is sequenced before a
unit of each product in the family if the discrepancy function is quadratic.

Since lemma 9 shows that j cannot be inserted between the products of the family, it is
sufficient to demonstrate it cannot be sequenced before the first one. Indeed, suppose
that it was not be in this way and a unit of j was sequenced in the position t( and the
units of the products in the family in t{, tp, ..., tk:

t+] Stop <t <ty <...<tg
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If more than one unit of j is sequenced between t and t1, tg corresponds to the last one.
If the sequence is optimum the associated value cannot be improved sequencing the
products of the family in tg, t1, ..., tg-1 and j in t, and therefore:

11
Y, [@-tn) + Kir - T.)° - (a+] - Tr)° - (xje-1 - T1p)’1 <O

=]

All the values x; - in the previous expression are identical, and they can be represented
by b; in such case, the previous expression is equivalent to:

. t -
2.(t-tg).fb-a-1- 0—+5tk—1 G-1)]<0
that is to say:
to+te—1
b-a-1- ————.(1j-1)) <0
2
Butb ZXj,t +1, and:
to+tr—1 <
a-Xj; 2 ————.(1i-1;)
2
Butt=t+l,andt=>t+k+ 1, and:
-1 1+
to+ te >t k .

and a contradiction is held.
COROLLARY 4: If in the conditions of the theorem

k
UL

a-Xj=(r-o).(+

and there is an optimum prolongation from X¢ in which a unit of j is sequenced before
the units of the products in the family, an optimum prolongation in which the unit of j is
sequenced afterwards also exists.

The demonstration is immediate. Take into account that if a unit of j could be sequenced
in ty we would have to postulate:

a-(b-1)2(r- rj).to

as a consequence of the theorem 2 and therefore:
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+k

(r; - I‘j).to < (ry- I'j).(t +

)

that is to say:

1+k
to<t+

The theorem 4 and the corollary 4 justify the rule 6. The lemma 9 does not demonstrate
that an optimum prolongation from X does not exist in which j will be the job
sequenced in t+1, but in such case the path built from 0 to U going through X cannot be
optimum and, therefore, this justifies the rule 5.

10. HEURISTIC H25 FOR QUADRATIC DISCREPANCY
FUNCTION

We propose a heuristic, that we call H2.5, for the case of quadratic discrepancy. It is
substantially a 3-step heuristic in which the products in the positions t+2 and t+3 are

determined following a simplified scheme based on the heurigtic of Ding and Cheng. If

in t+1, t+2 and t+3 a unit of the products i, j and k is sequenced, all different, the
is:

2.[3.Xi1 - (3.t+6).1; + 2.X; - (2.645).15 + Xper - (t+3).1)]
If i, j and k are not all different there will be only neceésary to modify X; ¢ or xk t
according to the units of j or of k sequenced; for instance, if k =1 # j xj ¢ will be
substituted with xj ¢ + 1 and ry with 1j.

In such conditions a unit of the product i will be sequenced in t+1 such that the value
s(i) will be minimum, with s(i) = s{(i) + s2(i) + s3(i). The calculation of s(i) can be
accomplished by means of the following algorithm:

Step 1: Computation of s(i)
if xj ¢ <uj then
s1() = 3.xj,¢t - 3.t4+6).13
otherwise
si(1) = o0; go to the step 5
end if

Step 2: Determination of j :
Forall b=1,2,..Pdoyh =xp¢;yi=%jt+1 -
s$o(i) = miny, {2.yp - (2.t+5).1 3 y <up }; j = value of h provided by s (i)

Step 3: Determination of k

Forallh=1,2,...Pdozh=yph;zj=yj+1
$3(1) = minp {zp - (t+3).1p 3 2z < up }; k= value of h provided by s3(i)
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Step 4: Permutation of j and k
Ifj#kand ¥j- ¥k < (rj - 1%).(t42)
Exchange jand k
$2(1) = 2.y - 2.t45).rx
s3(i) = ¥j- (t+3).rj

End if

Step 5: Computation of s(i)
s(i) = s1 (@) + s2@) + s3(1)

This procedure allows sequencing the first T-2 positions. Two units without being
sequenced will remain for the two last positions. That corresponding to the product with
lower rate will be located in the position T-1, using the rules; if the remaining units are
from two products with identical rate or from the same product, the order of sequencing
is indifferent. -

11. HEURISTIC WITH FILTERING OF THE CANDIDATES BY
MEANS OF THE RULES.

. -
The behaviour of the heuristic is notably inefficient in presen%e of product families. A
form of lessening this fact consists of the utilisation of the stated rules in the selection of
candidates for the sequence. As it can be observed in the computational experience
included in section 13, such filtering generally increases the efficiency of the rules. In
spite of the fact that in some instances the solution obtained with the filter is worse than
the one obtained without filter (especially in the heuristic DC and H2.5), the number of
times in which the opposite situation happens compensates widely these results.

12. ALGORITHM TO DETERMINE AN OPTIMUM SEQUENCE.

The algorithm is based on the application of BDP (bounded dynamic programming)
described in Bautista, Companys and Corominas (1995). Its basic structure is as follows:

Step 0. Initialization
0.1 Determination of the initial bound. XtH and the associated value are
determined for each value of t; if paradox does not happen, we have an optimum
solution and the algorithm ends, otherwise go to 0.2.
0.2. Determination of an initial solution. Applying a heuristic method (for
example the H2.5) an initial solution is determined and its value, the incumbent
one, i8S z(. '
0.3. Initial vertex of the graph. Put in the list L the vertex 0, the value £(0)=0
and the associated bound with the best prolongation k(0) = SBH. Do t=0.

Step 1. Generating the following ones.
1.1. The following possible vertices from a vertex are generated in the order of
list Ly taking into account the rules. Let X¢y1 = Xt + I; be one of the following
ones. :
1.2. If X¢41 is already in the list L4 1 we can getrid of it. Go to 1.4.
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1.3. If X¢4q was not in the list L4 1, it is added with the value
f(Xp) + oX¢ + Ij - (t+1).r), and the origin Xj.
1.4. Another following vertex is generated, or, if it is necessary, the following
vertex of the list Lt is taken, go to 1.2. If there is no more vertices in Ly to
generate the following ones, go to the step 2.
Step 2. Evaluating.
2.1. The bound of the prolongation of the vertices in- Ly is evaluated. Let
k(X¢41) be the bound for the vertex X¢,.1.
2.2, If fX¢41) + k(X¢41) 2 2 eliminate the vertex X¢41 of the list Ly 1.
2.3. If f(X¢41) + k(X¢+1) < Zg and in the calculation of the bound paradox did
not happen, do zg = f(X¢+1) + k(X¢4+1) and keep Xy 1 as a vertex belonging to
the best found solution. Eliminate Xy 1 of the list Ly 1.
2.4. If in the calculation of the bound paradox happens, maintain Xt 1 in the list
Li+1 registering k(X¢4.1) in the list.
Step 3. Iterating
3.1. If the list L 4.1 is empty the optimum is already found, go to the step 4.
3.2. If the list is not empty, reorder it for non diminishing value f(X¢4.1)-
3.3. Do t=t+1, go to the step 1.
Step 4. Reconstructing the solution.
4.1. If the best solution saved is the initial, we have the complete sequence.
4.2. Otherwise, we have the last generated vertex X§ of the optimum path. The
path from 0 to X¢ is obtained from the precedent ones from those generated
vertices kept in the list 14, Lt.1, ..., the path from X¢ to U is the corresponding to
the calculation of the bound. a R
The symmetry can limit the number of vertices and levels to explore. If T is even, there
will be pairs of vertices (perhaps confused in only one) in t=T/2 that define an optimum
subpath (from O to T/2) and its optimum prolongation. They will be those pairs such that
X+Y=U(0'"X=0"Y =T/2). Such vertices can be eliminated from L/ updating, if
it is necessary, the value z(.

In the case of odd T such pairs of vertices will be found one in the level (T+1)/2 and
another one in the (T-1)/2 being demanded also in such case X+Y = U (O'". X = (T+1)/2;
0.Y = (T-1)/2) as a condition for matching. The vertex X can be eliminated from
L(T-+1)/2 updating, if it is necessary, the value of zg.

The rule 4, as an artificial order is imposed among the elements of a family and several
equivalent vertices are reduced, by such fact, to a single vertex, can compel to analyse
the different equivalencies to reach the matching of vertices. Moreover, a tie using rule
1 (equality of the condition) may have eliminated the complementary vertex of a given
vertex.

13. COMPUTATIONAL EXPERIENCE.

We have applied the algorithm to several blocks of problems with quadratic discrepancy
function and in table 1 some meaningful results are indicated:
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TABLE 1: NUMBER OF OPTIMUMS

P I{T Amount of | H1 H2 DC H2.5 All
Instances
4 |45 |672 422 595 485 645 657
450 598 490 662 665
5 |55 |3765 1365 2846 2261 3427 3514
1668 2878 2336 3504 3565
6 |80 |49342 10495 | 25580 | 18307 | 38306 | 39816
13034 | 26025 | 20093 | 40088 |41118

The number of instances for each P and T values corresponds to different combinations
for P positive integers whose sum is T.

In the upper part of the cell, we indicate the amount of optimums obtained with the 1-
step heuristic (H1), the 2-step one (H2), that presented by Ding and Cheng (DC) and
that proposed in section 10 (H2.5). In the lower part of the cell, we also indicate the
amount of optimums reached by such heuristics filtering candidates by means of the
rules. In the “all” column, there is the amount of optimums reached by the best heuristic,
without filtering and using the rules (upper part of the cell), and by the set of the eight
heuristics (lower part of the cell). The algorithm proposed in section 12 (BDP) reaches
all the optimums and has been used to contrast results. i

It can be observed the progressive degradation in the quality of the heuristic when the
dimension of the problems increases. ‘ ~

In table 2, we provide an idea of times corresponding to the eight heuristics and to the
BDP algorithm obtained with a 486 PC, 66 MHz. The heuristics have been programmed
in the optimised form indicated in the present text. Time for the BDP algorithm does not
take into account that to determine the initial solution (for this purpose, the heuristic DC
without filtering has been used). :

TABLE 2: MEAN UNITARY TIME (seconds/instance)

P |T Number of | Unit time | Unit time | Unit time | Unittime | Unit time
instances | H1 H2 DC VH2.5 BDP

4 45 | 672 0105 .0236 .0157 .0424 ' 1.7347
0150 .0307 0269 .0486

5 |55 3765 .0150 .0399 0217 0764 3.5171
0253 .0524 .0524 .0824

6 |80 |49342 0270 .0761 .0385 1515 8.4693
0476 1018 .0828 1630

An important feature for the BDP algorithm is the window width H, which corresponds
to the maximum amount of vertices held by the algorithm at some levels (defined for the
t value). In this table, the maximum value of the window width used in the resolution of
some instances is indicated, as well as the average value taking into account the number
of instances in the block. It can be observed the moderate growth of that, related to the
progressive degradation in the quality of the initial solution.
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TABLE 3: NECESSARY WINDOW WIDTH IN THE BDP ALGORITHM

P T number of | Hpax | Hay

instances
4 145 |672 5 1.5878
5 |55 |3765 9 2.0173

6 |80 |49342 19 3.7812

14. CONCLUSIONS.

We have presented a formalisation for the PRV problem, several heuristic and an exact
procedures to determine the optimum solution, providing computational experience.

Taking consideration of the foregoing, it seems to that a good heuristic algorithm is the
H2.5 combined with the candidates filtering by means of the rules. Using the solution
provided by such algorithm to start the application of BDP can contribute significantly
to reduce the necessary window width to reach the optimum solution (or to prove the
initial is the optimum), and therefore, to reduce the necessary time for such algorithm.
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