
Local Search Heuristics for the Assembly Line Balancing Problem
with Incompatibilities Between Tasks*

Joaquin Bautista, Raúl Suárez, Manuel Mateo, Ramón Companys

Institut d’Organització i Control de Sistemes Industrials (UPC)
Diagonal 647, planta 11, 08028 Barcelona, Spain. Phone: +34-934016653, Fax: +34-934016605.

Contact emails: bautista@ioc.upc.es, suarez@ioc.upc.es, mateo@ioc.upc.es

* This work was partially supported by the CICYT Projects TAP98-0471
TAP98-0494 and TAP99-0839.

Abstract

This paper deals with the Assembly Line Balancing
Problem considering incompatibilities between the tasks
with the aim of, first, minimizing the number of
workstations and, then, minimizing the cycle time for the
minimum number of workstations. In order to solve the
problem we propose the use of a Greedy Randomized
Adaptive Search Procedure (GRASP) obtained from the
application of some classic heuristics, based on priority
rules, and a genetic algorithm that searches for the
solution in the heuristic space. A computational
experience is included to illustrate the performance of the
proposed approach.

1 Introduction

The Assembly Line Balancing Problem (ALBP) can be
divided into two groups, according to the classification
proposed by Baybars [1]: Simple Assembly Line
Balancing (SALBP) and General Assembly Line
Balancing (GALBP). The first group determines the tasks
assigned to a set of workstations with the same cycle time;
each task has a deterministic duration and must be
performed in only one of the workstations, either by
human operators or by robots. Two goals can be
considered in addition to the precedence relations between
the tasks: the minimization of the number of workstations
for a given cycle time (SALBP-1) and the minimization of
the cycle time for a given number of workstations
(SALBP-2). Any other variation of the problem is
included in the second group.

In this work, an extension of SALBP-1 is presented,
considering incompatibilities between groups of tasks, so
that if two tasks are incompatible they cannot be assigned
to the same workstation. As a secondary goal, we try to
reach the minimum cycle time once the number of
workstations has been determined.

For the exact solution of the SALBP a number of different
procedures have been applied, such as for instance, branch
and bound [2,3], but these are only useful for low
dimension examples because the problem is NP-hard. On
the other hand, for the high dimension examples found in
industry, heuristic procedures are accepted [4], both for
SALBP-1 [5] and for SALBP-2 [6].

SALBP-1 is typically solved with greedy heuristics, based
on the application of priority rules to assign the tasks to
the workstations. The rules consider such aspects as the
duration of the tasks, the number of tasks after a given
one, the constraints on the minimum number of
workstations to fulfill the assign, etc., or even a mixture of
these aspects. The rules are used to establish an ordered
list with the possible tasks, so in each selection the most
suitable task (according to the chosen rule) can be chosen.
Usually, this type of heuristics considers only one rule that
completely determines the sequence of tasks (except when
the rule includes any random selection). The solutions
obtained through this approach are acceptable, and when a
rule considers a combination of several aspects it can even
lead to better solutions. Nevertheless, it is not possible to
conclude that any rule is better than the others for all the
instances of the problem.

Another type of heuristics, which is useful for local search
methods, includes Hill Climbing (HC), Simulated
Annealing (SA), Tabu Search (TS) and Genetic
Algorithms (GA) [7]. This type of heuristics searches for
other solutions, in a given neighborhood, beyond the
direct solutions obtained through the previously
mentioned greedy heuristics. Though the definition of a
neighborhood may be general and valid for any
combinatorial problem, knowledge of the specific
problem is lost, unlike in the case of greedy heuristics.

A third type of heuristics to reach good line balancing are
Greedy Randomized Adaptive Search Procedures

(GRASP), which allows the introduction of random
effects into greedy heuristics that are specially adapted to
the problem. These procedures have already been
successfully used for different applications in industrial
engineering, for instance in a number of characteristic
problems of combinatorial optimization [8].

In this work we proposed two different procedures that
consider simultaneously:

1) the main positive aspect of the first type of heuristics:
the knowledge of SALBP given by the specific
priority rules of the problem;

2) the main positive aspect of the last two types of
heuristics: the ability to generate a great number of
solutions in the search space (in any combinatorial
problem).

In the following sections the two proposed procedures are
introduced: in Section 2, a GRASP generated from the
classic heuristics in the literature, and in Section 3, a
Genetic Algorithm as a representative heuristic for local
searches. Section 4 presents a computational analysis and
Section 5 summarizes some conclusions of the work.

2 Basic Greedy Heuristics and GRASP
Figure 1 shows the flow chart of an algorithm for the
generation of solutions to SALBP. The schema is valid for
both greedy heuristics and the GRASP heuristics based on
them.

The greedy heuristics assign the task (box 5) with the best
index value, obtained from the application of priority
rule(s) among the set of tasks compatible with the
previously assigned tasks, the precedence relations and
time constraints. The list of indexed tasks is generated
(box 3) while some tasks are still to be assigned (box 1)
and they can be assigned to the open workstation (box 2).

In Figure 1 there are two main circuits. The first one, on
the left, is formed when a new workstation must be
opened in the assignment. When there are no tasks in the
list of candidates (box 4) and not all the tasks have been
assigned (box 1), a new station is added to the previous
ones in the current solution (box 2) and, for these new
conditions, the list of candidate tasks is refreshed (box 3).
The second circuit, on the right, updates the solution once
a task is assigned (box 5); this involves recalculating the
available time at the current station (box 6) and
determining the new constraints for that station (box 7).

A local search procedure to optimize the balancing (box
8) can then be applied to the obtained incumbent solution
in order to optimize the definitive solution. In the
selection of tasks for the indexed list of candidates, at

least one priority rule is required to define a heuristic. A
sample of 13 basic rules, widely used in the literature, is
presented in the Appendix.

These main features of the classical greedy heuristics have
been adapted in the GRASPs, random selections being
introduced in the generation of solutions by using a
probability distribution (updated at each task assignment).
Usually, the list of candidate tasks is limited in order to
enhance the probability of the most suitable candidate
tasks.

In our approach this probability distribution depends on
an index resulting from the priority rule considered, so we
call the procedure Greedy Randomize Weighted Adaptive
Search Procedure, GRWASP.

7: Determine new
station constraints

1:Are
all the task
assigned?

2: Open station

no

3: Determine list of
candidate tasks

4: ∃ tasks
in the list?

5: Assignation of
tasks

yes

6: Calculate available
time in the station

no

yes 8: Local
optimization

END
D

Figure 1: Flow chart for greedy and GRASP approaches.

3 A Genetic Algorithm as a Local Search
Heuristic

3.1. Neighborhoods in Local Search Methods

Local search methods are used to explore neighborhoods
with “neighbor solutions”, a concept than can be defined
in different ways. One way to define neighbor solutions of
an initial solution is by characterizing the last one by a
sequence of elements and, then, looking for other
solutions by changing the order of elements in the
sequence. For instance, the assignment of tasks to a set of
workstations can be determined by the order in which the

tasks must be executed, and altering the numbers in the
sequence may lead to neighbors. The definition of
neighborhoods is general and does not take advantage of
the specific information about the problem to be solved,
but it has the advantage of being applicable to any
problem. Thus, knowledge of the problem can be used to
create more suitable neighbors.

Storer [9] proposed other neighborhood definitions based
on the relation between a heuristic h and the solution s
obtained when h is applied to an instance of the problem
p: h(p) = s. This relation allows the definition of
neighborhoods both in the problem solution space and in
the heuristic space.

In the solution space, the neighborhood is obtained by
taking the following steps: 1) introducing random
perturbations in the problem data (within reasonable
bounds); 2) applying a heuristic procedure to obtain a
solution; and 3) evaluating the solution with the original
data.

In the heuristic space, two new variations on the available
heuristics for SALBP are proposed:

1. Definition of a new hybrid rule as a weighted linear
combination of the original set of rules ρi:

∑=
∀i

ii ρπρ

2. Splitting the tasks to be assigned into subsets (usually
called “windows”) and using a particular rule for each
subset. This allows the characterization of a solution
by a vector of rules r = (ρ[1], ρ [2],, ρ [N]); where N
is the number of tasks and ρ[k] is the rule applied in
the k assignment.

Thus, from the second approach, we can conclude that,
given a vector of rules r and a procedure A, a heuristic can
be defined as the pair (r, A): h = h(r, A). In this way, all
the heuristics resulting from the composition of a vector
of rules and the procedure shown in Figure 1 are valid.

3.2. Application in a Genetic Algorithm

As a result of the above considerations, a genetic
algorithm that includes the generation of solutions in the
heuristic space is presented below.

Nomenclature:

I number of individuals (vectors of rules) in the
population.

L number of iterations (generations).
p instance of the problem to be solved.

Πr population of ancestors of the sequences of rules.
Πh population of ancestors of the heuristics.
Πs population of ancestors of the solutions.
∆r population of descendants of the sequences of rules.
∆h population of descendants of the heuristics.
∆s population of descendants of the solutions.
Ωr population of eligible sequences of rules for the next

iteration (generation).
ri element i of the sets Πr , ∆r , Λr and Ωr.
hi element i of the sets Πh , ∆h and Λh.
si element i of the sets Πs , ∆s and Λs.

Begin GA
Phase A. Initialization

0 Data initialization

0.1 Generate the initial populations Πr with different
homogeneous sequences of rules: Πr ={ ri =
(ρ[1],..., ρ [N]) : ρ[1]= ..= ρ [N]}

0.2 Generate the initial population of heuristics: Πh

= { hi = hi(ri,A) : ri ∈Πr}
0.3 Generate the population of solutions of p and

evaluate their makespan:
Πs = { si = hi(p) : hi ∈Πh}

0.4 Determine the fitness fj of the elements of Πs as:

j

NE

k k
N

i i

jj
NEC

Cc

C

t
NEf

j∑∑ −
+












+−=

+

=
2

1
)(

where:

ti duration of task i
C cycle time
NEj number of stations in the j-th solution
ck occupied time in the k-th station (1≤k≤ NEj)

0.5 Save as incumbent solution the pair (h*,s*) with
greatest fitness

Phase B: Iterate through the following steps L times:

1. Selection of ancestors:
Build I/2 pairs of elements of Πr according to the
fitness of the elements of Πs.

2. Choice of the pairs for the crossover:
2.1 Determine the probability of the current

crossover: Pc = Pc(α) with

∑ ∑= ≠−
= I

i ij jih
NII 1 ,

1

)1(

1α

where hi,j ∈{0,1 }∧ [hi,j = 1 ⇔ ρ[k] (∈ri) =ρ[k]

(∈rj) ∀k , 1≤k≤N]

2.2 Assign a random number to each pair of rule
sequences.

2.3 Decide, for each pair of rule sequences, if a
crossover should be performed according to the
relation between the random number and the
probability depending on population
homogeneity Pc.

3 Generation of descendants:
3.1 Crossover the selected pair of sequences of

rules to generate two descendants, creating ∆r.
3.2 Generate ∆h and ∆s from ∆r as was done in 0.2

and 0.3 respectively.
3.3 Determine the makespan of the elements of ∆s.

If any element of ∆s has a better makespan than
the incumbent solution, then save as heuristic
and incumbent solution the pair (h*,s*)
associated with that element.

4 Mutation of descendants:
4.1 Determine the probability of mutation of the

current generation: Pm = Pm(α).
4.2 Assign a random number to each element ∆r.
4.3 Decide the elements of ∆r to be mutated

according to their random number and Pm.
4.4 Mutate the chosen elements of ∆r creating Λr.
4.5 Generate Λh and Λs from Λr as was done in 0.2

and 0.3 respectively.
4.6 Determine the makespan of the elements of Λs.

If any element of Λs has a better makespan than
the incumbent solution, then save as heuristic
and incumbent solution the pair (h*,s*)
associated with that element.

5. Regeneration of the population:
5.1 Build the population of eligible elements

Ωr← Πr + ∆r + Λr

5.2 Determine the fitness of the elements of the
populations ∆s and Λs as was indicated in 0.5.

5.3 Choose I elements from Ωr according to the
fitness of the elements of Πs , ∆s and Λs.

 End GA

4 Computational analysis

The computational analysis was based on the following
heuristics:

• 13 greedy (and deterministic) heuristics, found in the
literature, corresponding to the rules in Appendix A.

• 6 traditional GRASP heuristics selected from the 13
rules mentioned above. The chosen GRASP
heuristics were generated from the following rules:

- Longest Processing Time (rule 1),
- Greatest Ranked Positional Weight (rule 4),
- Greatest Average Ranked Positional Weight

(rule 5),
- Greatest Processing Time divided by Upper

Bound (rule 8),
- Maximum Number of Successors divided by

Slack (rule 11),
- Bhattcharjee & Sahu (rule 12).

• The same 6 GRASP heuristics, but revised by
introducing a selection probability for the task
assignment proportional to the value of the parameter
used in the rule. For instance, the value for the first
rule is the longest processing time.

• 7 versions of the presented Genetic Algorithm, with
different crossover and regeneration processes to
generate solutions in the heuristic space. The
probabilities of mutations and crossovers depend on
the index of homogeneity in the population α, which
is used as: Pc = 1 – 0.5α for crossovers, and Pm =
0.05 + 0.95α for mutations.

These procedures were used to solve 160 instances,
divided into 4 groups of 40 instances with 20, 40, 60 and
80 tasks respectively. According to the order strength of
Mastor and the Rachamadugu ratio of incompatibility, the
values considered were between 0.05 and 0.75.

The results are illustrated in Figures 2 and 3. Figure 2
shows the number of times that the heuristics found the
best solution (minimum number of workstations) in the
160 instances, and Figure 3 shows the ratio between the
average of the values obtained by each procedure and the
best obtained value.

Regarding the minimization of the number of
workstations, the Genetic Algorithms were clearly better
than the greedy heuristics based on priority rules without
any local optimization. On average, the Genetic
Algorithms and the proposed GRWASP (revised GRASP
with weights) procedures achieve the best results, while
the greedy heuristics produce the worst ones.

5 Conclusions

In this work a new approach to SALBP with
incompatibilities between the tasks has been proposed. It
includes the knowledge provided by the greedy
(deterministic) heuristics of a given problem in the local
search heuristics, such as HC, SA, TS, GA (in this paper a
GA was presented) or in a GRASP. In this way, in the first

case, a solution can be characterized by a sequence of
priority rules and, in the second case, the tasks are
randomly selected according to the value of fitness
provided by a rule.

Figure 2. Number of times that the heuristics
achieved the best solution in the 160 instances.

1

1.02

1.04

1.06

1.08

1.1

1.12

 GRWASP GRASP Greedy Heuristics Genetic Alg.

Figure 3. Results obtained for the 160 instances
with the 32 mentioned procedures; the vertical axis
indicates the ratio between the average of the
values obtained by each procedure and the best
obtained value.

Appendix A: List of Rules

Nomenclature:

i, j indices for the tasks
N number of tasks
C cycle time
ti duration of task i
ISi set of tasks immediately after task i
Si set of tasks after task i
TPi set of precedent tasks of i
Li level of task i in the precedence graph

Schedule the task z* : v(z*)=maxi∈Z[v(i)]

Name Rule
1.Longest Processing

Time

v(i) = ti

2.Greatest Number of

Immediate Successors

v(i) = | ISi |

3.Greatest Number of

Successors

v(i) = | Si |

4.Greatest Ranked

Positional Weight

v(i) = ti + ∑ tj (j∈Si)

5.Greatest Average

Ranked Positional

Weight

v(i) = (ti + ∑ tj (j∈Si)) /

(| Si |+1)

6.Smallest Upper

Bound

v(i) = –UBi= –N –1+

[(ti + ∑ tj (j∈Si))/C]+

7.Smallest Upper

Bound / Number of

Successors

v(i) = –UBi / (| Si | + 1)

8.Greatest Processing

Time / Upper Bound

v(i) = ti / UBi

9.Smallest Lower

Bound

v(i) = –LBi = – [(ti +

∑ tj (j∈TPi)) / C]+

10. Minimum Slack v(i) = – (UBi – LBi)

11.Maximum Number

Successors / Slack

v(i) = | Si | / (UBi - LBi)

12.Bhattcharjee &

Sahu

v(i) = ti + | Si |

13. Kilbridge &

Wester labels

v(i) = – Li

References

[1] Baybars, I. (1986): “A survey of exact algorithms for
the simple assembly line balancing problem”.
Management Science, Vol. 32, No. 8, pp. 909-932.

[2] Hoffmann, T.R. (1992): “Eureka. A hybrid system for
assembly line balancing”. Management Science, Vol. 38,
No. 1, pp. 39-47.

GRWASP GRASP Greedy Heuristics Genetic Alg.

1

21

41

61

81

101

121

[3] Klein, R.; Scholl, A. (1996): “Maximizing the
production rate in simple assembly line balancing – a
branch and bound procedure”. European Journal of
Operational Research Vol. 91, No. 2 Jun 7, pp. 367-385.

[4] Erel, Erdal; Sarin, Subhash C. (1998): “Survey of the
assembly line balancing procedures”. Production
Planning and Control, Vol. 9, No. 5, Jul-Aug 1998, pp.
414-434.

[5] Boctor, F.F. (1995): “A Multiple-rule Heuristic for
Assembly Line Balancing”. Journal of the Operational
Research Society, 46, pp. 62-69.

[6] Ugurdag, H.F.; Rachamadugu, R.; Papachristou, C.A.
(1997): “Designing paced assembly lines with fixed
number of stations”. European Journal of Operational
Research, Vol. 102, No. 3, pp. 488-501.

[7] Rekiek, Brahim; Falkenauer, Emanuel; Delchambre,
Alain (1997): “Multi-product resource planning”,
Proceedings of the IEEE International Symposium on
Assembly and Task Planning 1997. Marina del Ray, CA,
USA, pp. 115-121.

[8] Díaz, A.; Glover, F.; Ghaziri, H; González, J.M.;
Laguna, M.; Moscato, P.; Tseng, F. (1996): Optimización
heurística y redes neuronales. Paraninfo.

[9] Storer, R.H.; Wu, S.D.; Vaccari, R. (1992): “New
search spaces for sequencing problems with application to
Job Shop Scheduling”. Management Science. Vol. 38,
No. 10, pp.1495-1509.

