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Abstract  
 
There are different approaches for the mixed-model assembly-lines sequencing problem. In this paper the goal of minimizing 
work overload is treated. This approach considers the existence of time windows in each work station. Different versions of a 
product are considered to be assembled in the line (e.g. car industry), which require different processing time according to 
the work required in each work station. Long sequences of rich-work products can lead to produce work overload when 
stations cannot fulfil all the assigned tasks. Since solve this problem optimally is difficult, we test local search and a hyper-
heuristic procedure. A computational experiment is used to detect the performance of the proposed procedures.  
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1 Introduction  

Assembly lines are commonly used in automotive industry. Two important decisions for managing mixed model 
assembly lines are to spread out work in stations (balancing) and to determine the sequence to introduce cars in 
to the assembly line (sequencing). When the medium term decision of balancing has been taken, sequencing 
decision must be considered. Depending on the manufacturing environment it may be desirable minimize or 
maximize some parameters or characteristics of the line [1]. One of the two main criteria [2] for sequencing 
mixed models on assembly lines considers the labelling of load on stations. The problem addressed in this paper 
considers the objective of minimizing the work overload. Since processing time for a product in a station can be 
grater than cycle time, there is a maximum quantity of those products that can be consecutively introduced in the 
line without causing a delay in the finishing of works. All those jobs with high and low work content must be 
under control for avoiding excessive work load and idle time. Stations are confined by upstream limit and down 
stream limit. That implies that products are mounted on an assembly line that moves at constant speed and 
workers can do their job on products only when they are inside their station. Products get in the station at 
constant time intervals. Work overload occurs when work on a product can not be finished before it leaves the 
station. 

Initial works on this criterion were carried out by [3] or [4]. In this paper an extension of a procedure in [3] is 
proposed, which considers not only two different jobs/products (basic product and special product, differentiable 
by their poor and rich work content respectively), but also multiple products. Other literature related with the 
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problem is [5], [6], [7] and recently [8]. Inspired on procedures from [4] and [9], in [10] constructive procedures 
in proposed, which consider multiple products and multiple stations. We use local search with different 
neighbourhoods for improving the solutions obtained with constructive procedures from [10].  

During the last years promising search algorithms called hyper-heuristics have been proposed to raising the level 
at which optimizations systems can operate [11]. The term describes the process of using (meta-)heuristics to 
chose (meta-)heuristics to solve the problem in hand. In theory, a hyper-heuristics should be cheaper to 
implement and easier to use than problem specific special propose methods and the goal is to produce good 
quality solutions in this more general framework. Some problems in which the hyper-heuristics performance has 
been testes are the timetabling [12] and bin-packing [13]. Then, looking for a whole search algorithms [14] a 
hyper-heuristics is proposed to solve the sequencing problem treated in this paper. 

This paper is organized as follows: section 2 contain our constructive proposals, in section 3 we apply local 
search, section 4 contains a proposal of a new hyper-heuristic procedure, section 5 shows computational 
experience for constructive procedures, local search and the hyper-heuristic. In section 6 conclusions are 
mentioned. 

2 Work overload 

In [3] a general formulation for measuring work overload is proposed. Work overload is measured in time units 
and the time unit is the cycle time c (time between product arrivals into the station). Let L denote the station 
length (or time window), pik the processing time for the job on the product i (i=1,…,I) in the station k 
(k=1,…,K), st the starting instant of the job in the position t (s1=0; st=max(t-1,ft-1)), and ft the finishing instant of 
the job in position t (ft=min(st+pi,t-1+L)). Given a sequence of size T (t=1,…,T), and considering only one 
station, wot is the work overload obtained in position t of the sequence: wot = [pi+st–(t-1+L)]+ where [x]+ = 
max(0,x). The total work overload is z = ∑twot. Mathematical programming formulations of the problem can be 
found in [3] or [6]. The problem is difficult to solve due to the lack of structural properties. The problem has a 
lot of possible solutions and a big effort to evaluating those solutions is required. The problem is considered to 
be NP-hard [3], [6] or [8]. 

To elucidate the reader on the work overload problem, a single station illustrative example is shown. Four 
products are considered: A, B, C, and D, with the following processing times (0.82, 0.94, 1.19, 1.15), and 
demands (3,5,7,1). Station length L=1.2. Processing times and station length are expressed in cycle time units 
(c=1). Let us assume products are going to be introduced into the assembly line in the following order: 
CCCADCCBCABABCBB. 

 

Fig. 1. Worker movement diagram 

Without loss of generality, the initial worker position is assumed to be on the upstream limit of the station. 
Figure 1 represents the movement of the worker during his job on the products according to the sequence 
established above. Arrows represent the processing times, and dotted lines represent the worker displacement 
from one finished product to the next product on the line. Station length is limited by the down stream limit 
(dsl). The first job is done on a product kind C, which requires 1.19 time units. When this job is finished, the 
worker walks upstream for reaching the product C in position 2 of the sequence. We assume this time is 

C   C   C   A   D   C   C   B    C  A   B   A   B    C  B   B 

w1   w2 w3   w4      w5 

time 

dsl
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negligible because the velocity of the worker is greater than the conveyor speed. Then, the worker starts the 
second job 0.19 units away from the upstream station limit and would finish it 0.19+1.19 units away from the 
upstream limit. Nevertheless, the worker can not go beyond the dsl, and 0.18 units of work must be left 
unfinished (w1). When the worker reaches the dsl, he leaves his job and walks upstream, and starts working on 
the product in position 3 of the sequence 0.20 units away from the upstream limit. Again, the time allocated is 
not enough to finish the job, and 0.19 units of work overload are produced (w2). The product in position 4 
requires 0.84 time units, and the work on it is finished when the worker is 0.20+0.84 units away from the 
upstream limit. This time, the job is completed. Products in positions 6, 7 and 9, also produce work overload 
(w3=0.16, w4=0.19, w5=0.13). The total work overload produced by the sequence is 0.85 cycle time units. 

3 Local search  

Two well known kinds of neighbourhoods had been used in the local search (LS): swap and insertion. Four seed 
sequences are obtained with constructive procedures presented in [10].  

3.1 Swaps 

Swaps of two and three elements of the sequence had been considered. Swap of two elements (2S) is simple. 
One solution can just produce a new one. Nevertheless, swap of three elements have five possible neighbours 
solutions. From those five possibilities, only in two of them the three elements considered take a new position in 
the sequence: (b,c,a) and (c,a,b). Three-swap is depicted in Figure 2. 

 

Fig. 2. Scheme for 3 swap 

Then, we had used two different 3-swap neighbourhoods: 3S(a) and 3S(b). Neighbourhood 3S(a) considers the 
two changes where all of the elements considered take a new position in the sequence. In the other hand, 3S(b) 
take into account the five possibilities. We had also considered the idea of applying 3-swap after a local 
optimum has been found with 2-swap. This scaled search is references in this paper as 2-3S(b). 

 

Fig. 3. Scheme for Insertion 

 

 

or=2 
T 

a              b           c 
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3.2 Insertion 

By the insertion, a new neighbour from the current feasible sequence is obtained getting a segment of certain 
size from the solution, and then it is inserted in a different position of the sequence. Even tough size of segments 
(let or) can take the value 1 ≤ or ≤ T, in the computational experience only had been tested 2 ≤ or ≤ 10. The size 
of the insertion neighbourhood is smaller than the swap neighbourhood; therefore, the computational effort is 
smaller than the swap neighbourhood one. Nevertheless, to do complete neighbourhood search still requires a 
considerable computational effort. In all the local search experiments, the stop search criterion used is the 
maximum number of iterations with out improvement. This parameter has been established to T . Figure 3 
depicts the insertion of segment of size 2. 

4 Priority Rules  

In this section a hyper-heuristic is described (HH). The procedure is inspired on the Scatter Search (SS) Meta 
heuristic [15]. A key difference between HH and the original SS procedure is the following: instead of using 
feasible solutions for producing new ones, our proposal use priority rules chains. The objective value of a chain 
is obtained getting the corresponding solution sequence and its work overload value. That is done using a 
constructive procedure of rules combination (PCCR). 

4.1 PCCR 

PCCR is a greedy constructive procedure based in the combination of priority rules. The assignation of a 
product in certain position of a sequence depends on the priority rules. A set of rules R={r1,r2,r3,...,rR} 
establishes the order of the products in a sequence. The chain (sequence of priority rules) will have the same 
number of rules as positions have a product solution sequence (T). The rule in the position t of the chain, 
determines from a set of products, the product i that best satisfies the rule r. 

Given a rules chain size T, the determination of the product that best satisfies the rule r of the position t of the 
chain is obtained as follows: 
• For each candidate product, compute the value of the application of the rule r .  
• Select the product i with the best value for the rule r.  
• Assign the product i in the position t of the products sequence.  
• Update pending demand for product i. 

4.2 Hyper-heuristic 

Similarly to SS [15], our proposal (HH) is an evolutionary algorithm that creates new elements combining the 
existing ones, improving this way the criterion used to evaluate the elements. Our proposal operates on a 
Reference Set (RefSet). But, instead of a reference set of solutions, we use a reference set of rules chains. 
Combining those rules chains, new rules chains are created. A typical RefSet size in SS is 20 or less, while the 
size of our RefSet is in function of the number of rules R considered. The following is a pseudo code of the 
proposed procedure: 

 

Fig. 4. HH pseudo-code 

start 
0.1 Create RefSet static and dynamic. 
0.2 Initialize frequency matrix, Fr. 
while ( Diversifications < Max Diversifications ) 
1. Combine rules of the RefSet. 
2. Regenerate RefSet. 
if ( RefSet state is not improved )  
     3. Diversify RefSet. 
end if 
end while 
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The RefSet is conformed by two tiers: the static subset (RSs) and the dynamic (operative) subset (RSd). The size 
of both RSs and RSd is R. RSs is called “static”, because it is not modified during the search process. In RSs the 
rules chain 1 contains only the rule 1, the rules chain 2 contains only the rule 2, and so on.  In this way the 
procedure ensures the consideration of all the priority rules in the combination phase. 

}:{),...,,,( RrcrRSsrrrrcr rr ∈=→=  (1) 

The dynamic RefSet changes in each iteration of the search process. The rules chains of the initial RSd are 
generated randomly. RSd contains the elite group of rules chains. RSd is updated in each process iteration taking 
into account the new chains with the best values of work overload obtained by the last combination. 

1 ≤ RSdit ≤ R (2) 

The work overload value for a chain is obtained applying the PCCR. In this work, 20 priority rules had been 
used. If during the PCCR procedure, one or more products have the best value for the rule in period t of the 
sequence, the tie is eliminated taking only the products in the tie and applying the rules in order (starting with 
rule 1), until the tie disappears. 

Different criteria are considered in the priority rules used in the procedure. In Appendix A, are shown the 20 
priority rules used in this work. Rules 1-4 decide which product is going to be assigned using the processing 
times data. Rules 5 and 6 select the product with the bigger and smaller pending demand respectively.  Rules 
7,8,14 and 15 differentiate the products making a relation of pending production and the difference between the 
processing time and cycle time. The displacement of the workers in the stations is used for selecting the product 
in rules 9 and 10. Bottleneck station processing times are considered in rules 11 and 12. Rules 16 and 18 use the 
work overload caused by the assignment of a product. Rules 17 and 19 use idle time. Rule 13 select a product 
using the measurement of the regularization of the load along the sequence. Similarly, rule 20 select according 
the regularization of idle time. 

In each iteration of the process, a frequency matrix is updated Fr(r,t) , which contains the number of times that a 
rule r is in the position t of the chains in the RSd. Since RSs do not change, it is not necessary consider it for 
computing Fr. The Fr matrix is used in the combination of the rules chains in the RefSet. Fr is also used in the 
diversification phase. 

When two rules chains (parents, let cp and cq) are combined, a new one (son, let cr) is obtained. The element in 
the position t of the son chain is determined according to the frequency that the rule r has in the position t in the 
Fr matrix. 

    cp(t)   if cp(t) = cq(t) 
cr(t) =     cq(t)    if   Fr(cp(t),t) ≥ Fr(cq(t),t) 
    cp(t)   otherwise 
 
Once all the son chains had been obtained, the PCCR is used for getting the work overload value for the new 
chains. Those with the best values are considered for updating the RSd. That is, the RSd is regenerated. Three 
regeneration alternatives are analyzed in this paper: 
 
• The RefSet is regenerated with the best chains, considering both, the parents set and the sons set.  
• The RefSet is regenerated with the R best chains in the sons set. 
• The worst αR chains in the RefSet are regenerated by the αR best chains in the parents set. 
 

In the regeneration process, duplication of chains in the RefSet must be avoided. Then, all the chains in the 
RefSet have different work overload values. When the regeneration process does not produce improvements, the 
RefSet must be diversified. Diversification is done in two steps: 1) creation of diversified chains, and 2) selection 
of those diversified chains which are the least similar to each other. 

Step 1 of diversification is done using the information contained in the frequency matrix Fr. If diversification is 
needed, the combination of rules is done in a different way. Given two parent chains p and q, one diversified 
son chain is obtained. The difference in the way chains are combined in the diversification phase is the 
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following: in position t of the new diversified son chain, the rule of the parent chain that has the smaller value in 
the frequency matrix Fr is assigned. The idea is to obtain (bad) chains containing rules with inferior frequency 
in the Fr, expecting to guide the search in to an unexplored chains space. 

The second step of the diversification process iteratively looks for diversified chains. That is, the process 
identifies those chains in the pool of diversified chains that are different with respect to the chains inside the 
current RSd. The grade of differentiation between two chains is really measured with the number of 
coincidences. A coincidence exists if in the same position t, both of the chains have the same rule r. 

5 Computational Experiment  

The proposed procedures are tested with the battery of problems designed by [6]. In all the instances c=90 time 
units. Instances do not consider weight (cost) by incurring in work overload or idle time in stations. Instances 
are designed with different parameter values. To measuring the quality of the solutions obtained by the proposed 
procedures we use the same global index used by the battery designers. 

Originally in [6], instead of weak lower bounds, the objective function values wo*
h of the best known solution 

for an instance h is used when comparing procedures. Since this measure is not defined for wo*
h = 0, the 

following aggregated relative deviation is used:  
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We use two indexes for measuring the aggregated relative deviation. The original index (3) is represented by our 
index rel.wo2. Trying to get more information on the quality of the solutions obtained with the proposed 
procedures, in our index rel.wo1 the value wo*

h is a lower bound lbw (4). Computations are performed in a 
Pentium 4 CPU 2.4 GHz, 512 MB RAM under a system Microsoft windows XP professional 2002. 
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In LS computational experiment, four constructive procedures (CP) from [10] were taken to build a seed 
sequence for the search: Ud, UdC, UdR and YRx. Table 1 shows the rel.wo1 and rel.wo2 values obtained after 
LS with the different neighbourhoods. In the search by three elements sweeping, the computational effort is 
much bigger than the effort required in 2 elements swap due to the size of the neighbourhood. In Table 1 can be 
seen an improvement on the indexes when 3S(b) is applied on the local optimal obtained with 2S.  

Table 1  
Global results after LS.  
       rel.wo1 (%)  rel.wo2 (%) 
     Ud  UdC  UdR  YRx  Ud UdC UdR  YRx   
LS  Initial  45.64  41.82  40.97  69.25  20.12 16.97 16.37  40.16   
Swaps  2S  24.32  24.30  24.53  24.54  2.53 2.51 2.70  2.71   
  3S(a)  35.16  33.03  34.84  55.39  11.47 9.72 11.21  28.16   
  3S(b)  32.99  31.86  30.55  44.15  9.68 8.75 7.67  18.89   
   2-3S(b)  23.96  23.88  24.09  24.06  2.23 2.17 2.34  2.32   
Insertions  2 Ins  23.88  23.64  23.80  24.38  2.17 1.97 2.11  2.58   
  3 Ins  23.51  23.35  23.34  24.22  1.86 1.74 1.72  2.45   
  4 Ins  23.34  23.20  23.19  24.25  1.73 1.61 1.60  2.48   
  5 Ins  23.15  23.00  23.00  24.02  1.57 1.45 1.44  2.28   
  6 Ins  23.01  22.95  22.99  24.03  1.45 1.40 1.44  2.29   
  7 Ins  22.98  22.87  22.77  23.91  1.43 1.34 1.26  2.20   
  8 Ins  22.82  22.71  22.63  23.34  1.29 1.21 1.14  1.73   
  9 Ins  22.72  22.61  22.60  23.35  1.21 1.12 1.12  1.73   
    10 Ins   22.56   22.65  22.44  23.29  1.08  1.16  0.98   1.69   

When segment insertion is used, the neighbourhood size is smaller than any of the insertion neighbourhoods 
(two elements or three elements). Given a segment or, its corresponding neighbourhood size is T-or. Segment 
insertion requires less computational effort than swapping. Since the neighbourhoods with swaps can be huge, 
search time has been limited. Trying to fins a local optimum, different search time limits has been establisher, 
according to the neighbourhood treated. The limit for LS with swaps was 3600 seconds, except for 2-3S(b), 



 IESM 2007, BEIJING – CHINA, May 30 - June 2 
   
which had 3600 for 2S search, and 1800 seconds for 3S(b) search. In segment insertion search, time limit was 
1800 seconds. Other advantage from segment insertion over swaps is the quality of the solutions. In general, the 
initial seed procedure UdR helps to obtain better results. The best combinations of segment size and initial seed 
is or=10 and UdR. Nevertheless, reader must remember that indexes in table 1 are global indexes which do not 
differentiate the instances by parameters.  

Work overload solutions have been compared with the lbw value. Table 2 shows the optimums reached. The 
best average values are obtained with the 2-3S(b), 3Ins, 4Ins, 5Ins and 6Ins. This time, the difference between 
the initial procedures is small. Until a quarter of the instances, the lbw value is reached with the combination 
UdR-5Ins. 

Table 2   
Optimums proved with lbw.  
Optimums           Initial Procedure        
     Ud  UdC  UdR  YRx  Average 
LS  Initial  2  2  2  1  1.75 
Swaps  2S  20  19  20  20  19.75 
  3S(a)  17  17  13  13  15.00 
  3S(b)  16  17  18  17  17.00 
   2-3S(b)  22  23  21  24  22.50 
Insertions  2 Ins  20  21  20  21  20.50 
  3 Ins  23  23  22  22  22.75 
  4 Ins  22  22  23  22  22.25 
  5 Ins  21  21  25  23  22.50 
  6 Ins  23  22  22  23  22.50 
  7 Ins  21  22  21  22  21.50 
  8 Ins  20  22  20  22  21.00 
  9 Ins  23  19  18  21  20.25 
    10 In   20   20  20  20   20.00 
 
The number of proved optimums using segment insertion neighbourhood increases when the segment size 
increases to, until the 5Ins. With this segment size are reached until 25 proved optimums with the initial seed 
obtained from UdR. For small instances, more optimums are reached when or is around T/2. 

A second computational experiment has been done to test the performance of the hyper-heuristic proposed 
procedure. The analysis considers the combination of three kinds of regenerations procedures described in 
subsection 4.2 (Reg1, Reg2, and Reg3), and the maximum number of diversifications permitted (D3-D6). Table 
3 shows three different global relative deviation indexes: rel.wo1, rel.wo2 and rel.wo3. In rel.wo3 the value wo*

h 
is the best solution founded considering the results obtained with CPLEX after 15 minutes of search. Indexes are 
grouped according to the parameters I (5, 10 and 20), K (5, 10 and 20) and L (110, 150 and variable). 

The performance of the three regeneration methods is similar. The more diversifications are applied, the better 
results are obtained; nevertheless, this improvement is small. Work overload solutions obtained with HH are 
almost as good as the solutions obtained considering CPLEX. In average, 156 seconds are needed by the HH 
procedure to finishing the search. HH gets better results than CPLEX in 52% of the instances, in the 11% gets 
the same result. HH is better than CPLEX in small instances, in medium size instances with different length 
stations, and in medium size instances with wide windows.  

HH gets relatively better rel.wo1 values than those obtained with the CP, for instances with I = 5, I = 10, K = 5 
and K = 10. In instances with I = 20, K = 20 the seed sequences of the CP have better indexes than those 
obtained with HH. The regeneration Reg1 gets the smaller index rel.wo1 in instances with parameters I = 5, I = 
20, K = 5 and K = 10. Reg2 works best with rel.wo1 in instances which has different station lengths. Reg 3 has 
the best relative deviation for instances with parameters I = 10, K = 20, and with instances which have all 
stations with the same length (groups L=110 and L=150).  Basically, in small and medium-small (I = 10 and K = 
10) instances, HH obtain better rel.wo1 values than the CP.  In 44% of the instances, HH gets better work 
overload values than the seed sequences (CP). In this context, the instances less favored by HH are those with 
many products and stations (I = 20 and K = 20), or instances with different station lengths. In instances with 
wide windows or with basic product, HH and CP obtain similar results. 
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Table 3  
Relative deviation values by parameters.  

 rel.wo1 (%)  rel.wo2 (%) rel.wo3 (%)  Group   Reg1 Reg2 Reg3  Reg1 Reg2 Reg3 Reg1 Reg2 Reg3  
I = 5 D3  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D4  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D5  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D6  2.31 2.31 2.65  0.05 0.05 0.38 0.87 0.87 1.21  
 Avg.  2.310 2.340 2.650  0.050 0.875 0.380 0.870 0.907 1.210  
I = 10 D3  32.94 32.90 32.62  0.70 0.67 0.45 2.20 2.17 1.95  
 D4  32.86 32.84 32.56  0.64 0.62 0.41 2.14 2.12 1.91  
 D5  32.82 32.78 32.52  0.60 0.58 0.38 2.11 2.08 1.88  
 D6  32.77 32.74 32.47  0.57 0.55 0.34 2.07 2.05 1.84  
 Avg.  32.847 32.815 32.542  0.675 0.605 0.395 2.13 2.105 1.895  
I = 20 D3  84.34 88.44 84.32  0.76 0.81 0.75 0.82 0.87 0.81  
 D4  84.23 84.41 84.08  0.70 0.80 0.62 0.76 0.85 0.68  
 D5  84.00 84.17 83.86  0.57 0.66 0.50 0.63 0.72 0.56  
 D6  83.64 83.85 83.86  0.37 0.49 0.50 0.43 0.55 0.56  
 Avg.  84.052 85.217 84.030  0.600 0.690 0.592 0.660 0.747 0.652  
K = 5 D3  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D4  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D5  2.31 2.35 2.65  0.05 0.10 0.38 0.87 0.92 1.21  
 D6  2.31 2.31 2.65  0.05 0.05 0.38 0.87 0.87 1.21  
 Avg.  2.310 2.340 2.650  0.050 0.087 0.380 0.870 0.907 1.210  
K = 10 D3  26.00 25.90 25.74  0.71 0.63 0.50 2.25 2.16 2.03  
 D4  25.93 25.84 25.68  0.65 0.68 0.45 2.19 2.11 1.98  
 D5  25.84 25.73 25.61  0.58 0.49 0.39 2.11 2.02 1.93  
 D6  24.76 25.65 25.55  0.51 0.42 0.35 2.05 1.95 1.88  
 Avg.  25.632 25.780 25.645  0.612 0.555 0.422 2.150 2.060 1.955  
K = 20 D3  89.59 89.83 89.32  0.72 0.85 0.58 1.14 1.27 1.00  
 D4  89.44 89.78 89.14  0.65 0.83 0.49 1.06 1.24 0.90  
 D5  89.39 89.72 89.04  0.62 0.80 0.43 1.03 1.21 0.84  
 D6  89.23 89.61 89.04  0.53 0.73 0.43 0.95 1.15 0.84  
 Avg.  89.412 89.735 89.135  0.630 0.802 0.482 1.045 1.217 0.895  
L = 110 D3  81.03 81.11 80.63  0.94 0.98 0.71 2.01 2.05 1.78  
 D4  80.87 81.02 80.48  0.85 0.93 0.63 1.91 2.00 1.70  
 D5  80.72 80.85 80.32  0.76 0.84 0.54 1.83 1.90 1.60  
 D6  80.54 80.67 80.24  0.66 0.74 0.49 1.73 1.80 1.56  
 Avg.  80.790 80.912 80.417  0.8025 0.8725 0.5925 1.870 1.937 1.660  
L = 150 D3  0.61 0.61 0.55  0.08 0.08 0.02 0.55 0.55 0.49  
 D4  0.59 0.61 0.55  0.06 0.08 0.02 0.53 0.55 0.49  
 D5  0.59 0.61 0.55  0.06 0.08 0.02 0.53 0.55 0.49  
 D6  0.59 0.60 0.55  0.06 0.07 0.02 0.53 0.54 0.49  
 Avg.  0.595 0.607 0.550  0.065 0.077 0.020 0.535 0.547 0.490  
[88-132] D3  10.69 10.47 10.50  0.59 0.40 0.43 2.67 2.48 2.51  
 D4  10.68 10.42 10.43  0.59 0.35 0.36 2.67 2.43 2.44  
 D5  10.67 10.38 10.43  0.58 0.32 0.36 2.66 2.39 2.44  
 D6  10.60 10.38 10.43  0.52 0.32 0.36 2.60 2.39 2.44  
 Avg.  10.660 10.412 10.447  0.570 0.347 0.377 2.650 2.422 2.457  

LS outperform HH, with the disadvantage of the time required to explore the neighborhoods. In average, HH 
requires 1/8 of the time needed by LS, and gets the half of the optimums obtained by LS. In general, the bester 
results are produced by the LS. HH coincide with the best value founded by LS in 14% of the instances. The 
more of such instances are small, with wide windows and with basic model. In HH, Reg1 obtain the best results. 
HH is deviated 17.33% from the best result founded with the procedures. 

6 Conclusions  

This work treats with a variant of the problem of sequencing products (mixed models) on a paced assembly line. 
We consider the approach in which a product demands a component (attribute), which has different versions, 
and requires different processing times in the application of each. The aim of these procedures is to minimize 
work overload (lost work) in all the stations of the assembly line due to the limited time spared in the stations 
and to the work loads along a given sequence. Both boundaries of stations are closed, and we assume as in [3], 
and [6], the displacement time the worker need to go from one product in to the next, is negligible. 
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In this paper we experiment with both: local search and priority rules. Four seed solutions for LS are gotten by 
constructive procedures. The LS improves the global relative deviation of the seed solutions to almost the half. 
Local search with segment insertion outperforms the elements swap neighbourhood, requiring less 
computational effort. LS finds the best solutions when is combined with the UdR seed constructive procedure. 

The hyper-heuristic proposed procedure tries to take advantage of both, the priority rules (problem knowledge) 
used normally in greedy procedures, and the generations of new good solutions inside the search space. The 
intensification phase of HH is based on the combination of a set of good rules chains in such a way that those 
rules appearing with more frequency are repeated in the new generated chains. The frequency of the appearance 
of each rule in the RefSet is also used in the diversification phase of the procedure. Three strategies are used in 
the intensification of the RefSet. Results of each strategy are very similar. The results of HH are almost as good 
as those that can be obtained with the seed constructive procedures used in LS. The LS gets much better results 
than HH, but require eight times more effort than HH. Other combination and diversification strategies must be 
explored to improve the results. A natural extension of this paper is the integration of effective local search 
procedures in the HH which promises interesting results. 
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Appendix A  

Let: 

pik processing time for product i in station k, 
ni original demand for product i, 
T total production or sequence length, ∑= inT , 
di pending demand for product i, 
rik allocation dynamic index for product i in station k, rik = di ⋅ ∆ik , 
∆ik worker movement in station k due to product i ∆ik = | pik - c |, 
Lk length of station k, 
ui ideal production for product i, Tnu ii = , 
sk initial worker position in station k, 
wt accumulated work overload until position t in the sequence, ∑−

=
=

1

0

t
kt ww

τ τ
, 

p  average processing time )/( IKpp ik ⋅= ∑ , 
kb bottleneck station, 
wi total work overload in the current position due to the assignment of product i, ∑= k tii ww , 

oi total idle time in the current position due to the assignment of product i, ∑= k tii oo . 

 
The following are the 20 priority rules used in the HH procedure: 
 
R1. Product with the biggest processing time (PT),     { }ikpi maxarg* ∈  
R2. Product with the smallest PT,        { }ikpi minarg* ∈  

R3. Product with the PT closest to average PT,    i* ∈ arg min {|pik- p |} 
R4. Product with the PT closest to c,     i* ∈ arg min{ ∆ik } 
R5. Product with the biggest pending demand,    i* ∈ arg max { di } 
R6. Product with the smallest pending demand,    i* ∈ arg min { di } 
R7. Product with the biggest dynamic index,     i* ∈ arg max { ri } 
R8. Product with the smallest dynamic index,    i* ∈ arg min { ri } 
R9. Product that produces the biggest total workers movement,    i* ∈ arg max {∑ =

∆
K

k ik1
} 

R10. Product that produces the smallest total workers movement,   i* ∈ arg min {∑ =
∆

K

k ik1
} 

R11. In the bottleneck station, the product with the biggest PT,   i* ∈ arg max { bikp } 

R12. In the bottleneck station, the product with the smallest PT,   i* ∈ arg min { bikp } 

R13. Product closest to ideal production,      i* ∈arg min {| (ni - di) – t ⋅ ui |} 
R14. Product with the biggest total dynamic index (in all stations),   i* ∈ arg max {∑ =

K

k ikr
1

} 

R15. Product with the smallest total dynamic index (in all stations),  i* ∈ arg min {∑ =

K

k ikr
1

} 

R16. Product that produces the biggest overload in the current period,   i* ∈ arg max { wi } 
R17. Product that produces the biggest idle time in the current period,   i* ∈ arg max { oi } 
R18. Product that produces the smallest overload in the current period,  i* ∈ arg min { wi } 
R19. Product that produces the smallest idle time in the current period,  i* ∈ arg min { oi } 
R20. Under the concept of regularity, the product with the overload closest to ideal overload, assuming the 
lower bound if the instance is lbw > 0,       

i* ∈ arg min ( ){ }it wwtT
lbw −−⋅  

where wt is the accumulated overload.  
     

 
 


