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Abstract 

One of the ways to solve the classical apportionment problem (which has been studied chiefly in 
relation to the apportionment of seats in a chamber of representatives) is the optimization of a 
discrepancy function; although this approach seems very natural, it has been hardly used. In this 
paper, we propose a more general formalization of the problem and an optimization procedure for a 
broad class of discrepancy functions, study the properties of the procedure and present some 
examples in which it is applied. 
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1. Introduction 

The classical apportionment problem (ApP) can be stated as follows. 

A positive integer, h, a set, M, such that |M|=m, and nonnegative real values qi (i=1,…,m) such that 
∑i=1

mqi=h, which are called quotas, are given. An apportionment of h is a vector (x1,…,xm) with 
nonnegative integer components such that ∑i=1

mxi=h. The objective is to find an apportionment such 
that the values xi are as close as possible to their respective quotas. 

This case occurs, for example, when the elements of M have associated values pi ≥ 0 (i=1,…,m), 
with ∑i=1

mpi=P, and we wish to distribute h proportionally to these values. Then 

hrq ii =   with  
p
pr i

i = . 

The value h may correspond to the available number of indivisible units of some resource, to be 
distributed among the m elements of M. 

A more general problem can be defined by relaxing the conditions relative to the qi (i.e., 
nonnegativity and ∑i=1

mqi=h), although in this case they cannot properly be called quotas. We will 
designate this problem as the generalized apportionment problem (GApP). 

The nature of the resource to be distributed and that of the elements of the set M can be very 
diverse. The distribution of the planned units of a family of products among the specific products 
which it comprises, for instance, can be seen as an ApP. 

The qi may correspond to some required or desired values to be assigned to the elements of the set 
M; if the sum of these desired values is greater than the number of available units to be distributed, 
h, we are faced with a GApP. Some examples would be the allocation of teaching staff to 
university departments, schools to city districts, computers to departments of a company or 
government body, copies of a book to libraries, servers to queuing facilities or identical machines 
to workers. 

The ApP has been studied primarily, however, in relation to the assignment of seats in a chamber 
of representatives to electoral constituencies (states in the case of the United States Congress) 
proportionally to their population, or to political options (parties or coalitions) standing at elections 
proportionally to votes obtained; of course in these cases the problem is just the classical ApP. 

In Section 2 of this paper we present a synthesis of the classical approaches to the ApP in its 
application to the apportionment of seats; in Section 3, we define procedures (which we call 
generalized divisor methods or GDMs) that optimize a family of general discrepancy functions, for 
the GApP, itself defined through very general properties, and we also establish a method for 
determining which discrepancy functions are optimized by any given GDM, including the classical 
divisor methods (DMs); in Section 4, we present some examples in which we apply the procedures 
given in Section 3; and finally, Section 5 includes some brief conclusions. 

 

2. The apportionment of seats in a chamber of representatives 

In relation to the apportionment of seats, the ApP has been dealt with most thoroughly in Balinski 
and Young, 1982 and Balinski and Young, 1994. Other references on the subject are given in this 
section. 
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We present a synthesis of the various ways in which the problem has been dealt with and a brief 
discussion leading on to the use of discrepancy functions, which constitute the basis of the 
developments contained within this paper. A more complete description of the methods and their 
properties can be found in Balinski and Young (1982). 

As regards the apportionment of seats, the first procedures to be formalized (Hamilton and 
Jefferson) date from the end of the 18th century. 

Nowadays it seems very natural to us to consider the ApP as being an optimization problem in 
which the aim is to minimize a discrepancy function between xi and the quotas. Historically, 
however, the procedures adopted were based on some simple rule for obtaining xi from qi without 
explicitly posing any discrepancy function, even though one or more were sometimes optimized by 
the procedure. 

In Hamilton's method, which is given many other names, one of the most frequently used of which 
is the largest fractions or LF method, each state is apportioned the integral part of qi and the 
remaining seats, one by one, according to the order of the fractional parts of the same qi (from 
larger to smaller). In DMs a common divisor, λ, is sought such that the quotients pi/λ rounded with 
a specific rule in each method (which characterizes that method), add up to h (λ can be interpreted 
as an approximation to the number of inhabitants per seat, which ideally, according to the “one 
man, one vote” principle, should be the same for all states, although, in general, due to the integrity 
of the seats, this ideal cannot be achieved). For example, in Jefferson’s method xi is the largest 
integer ≤ pi/λ (the quotient is truncated), whereas in Webster’s it is the largest integer ≤ (pi/λ)+0.5 
(the quotient is rounded in the usual way). 

The determination of λ is not difficult but does involve a process of trial and error and, moreover, 
on the whole there is no single value for this parameter. In practice, DMs are applied by using 
iterative algorithms for the successive apportionment of seats: divisors, d(a), with a ≥ 0 and integer, 
are defined such that a ≤ d(a) ≤ a+1 and d(a) < d(a+1); ai being the number of seats apportioned to 
the state i after a certain number of iterations, at each iteration a seat is awarded to one of the states 
to which the greatest value of the quotient pi/d(ai) (or the quotient qi/d(ai), given the proportionality 
between pi and qi) corresponds. Similarly, the quotients qi/d(a) (0 ≤ a ≤ h) can be calculated and the 
seats apportioned according to the order of these quotients, from larger to smaller. 

Clearly, then, DMs possess the property that solutions always exist for which xi(h+1) ≥ xi(h) ∀ i, or 
house monotonicity, property H, which means that if the house size increases the number of seats 
awarded to any option does not diminish. This is not the case, for example, with the LF or 
Hamilton's method. 

Of the infinite variety of DMs, the five that are considered as being traditional or historical are 
those presented and defined in Table 1. 

 

Table 1. Five traditional DMs 
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Traditionally, once a method was defined, the properties it possessed were studied. Later on, a 
different approach was adopted: to postulate properties and find methods possessing them. For 
example, Still (1979) postulates that a method should be H and Q (Q or quota being such that 

⎣ ⎦ ⎡ ⎤ ⎣ ⎦yqxq iii ,≤≤  being the integral part of y and ⎣ ⎦ ⎡ ⎤ii qq −−= ), and constructs a family of 

methods with these properties.  

Huntington (1928) was the first to introduce the concept of optimization in the approach to the 
ApP. Once an inequality measurement had been defined between two states, the aim was to find a 
locally optimal apportionment of seats, i.e., one in which no transfer of a seat from one state to 
another would improve the inequality measurement for the pair of states concerned. Naturally, the 
method used to find the solution depends on how the inequality measurement is defined; it is 
notable that those used by Huntington lead precisely to the five traditional DMs in Table 1, all of 
which were already known at that time. 

The optimization of a general discrepancy function has never, then, been a starting point for a 
definition of the typically applied methods. Nevertheless, in Balinski and Young (1983) several 
functions are suggested to measure the “error” of an apportionment. In Athanasopoulos (1993), the 
possibility of optimizing a function is mentioned and several functions are suggested too. In Ernst 
(1994), the ability of some methods to optimize certain functions is one of the arguments used in 
the very interesting legal debate that is set forth. As a rule, the fact of a method optimizing a 
discrepancy function appears as a property; thus, for example, the following has been proved. 
 
Proposition 1.  Hamilton minimizes ∑i=1

mf(xi−qi), with f convex and such that f(0)=0 (Bautista et 
al., 1994). 

 
Proposition 2.  Webster minimizes ∑i=1

m(xi−qi)2/qi (Lucas, 1978, p. 379; Balinski and Young, 1982, 
p. 105; the proof is based on an exchange argument). 

 
Proposition 3.  Hill minimizes ∑i=1

m(xi−qi)2/xi (Lucas, 1978, p. 379). 

 

It is not our intention to discuss the validity of the procedures adopted to date for the apportionment 
of seats, but they need not be the most appropriate for other circumstances in which the ApP may 
present itself. In some cases, it may be very natural to try to minimize a given discrepancy function 
yet have no reason to impose properties such as H, which is considered unavoidable when 
apportioning seats. In such cases, there is a need for some procedure which will optimize the 
discrepancy function adopted. 

It would also seem to be desirable to be able to determine easily which types of discrepancy 
function a given procedure optimizes, since, at the very least, this helps us to understand what the 
use of the method implies. 
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3. Generalized divisor methods (GDMs) 

The problem posed is as follows: 

Given: m, h (positive integers); real values qi (i=1,…,m); and functions fi(qi,xi) (i=1,…,m), defined 
for nonnegative integer values of xi and such that 

( ) ( ) ( )[ ]1,1,
2
1, ++−≤ iiiiiiiii xqfxqfxqf    (1) 

(these fi are functions of a single integer variable, xi, since qi intervenes as a parameter). 
To solve: 

 
PR1 

[MIN] ( )∑
=

=
m

i
iiis xqfz

1
.,    (2) 

.
1

hx
m

i
i =∑

=

    (3) 

xi ≥ 0 and integer.    (4) 

It is clear that for (1) to be fulfilled it is sufficient for fi to be convex, but the convexity, which is a 
stronger property, is not a necessary condition (recall that the functions must be defined for the 
integer values of the variables, but need not be defined for fractional values of them, as can happen 
in some applications; for instance, the functions may be defined by means of a table). 

Of course one can devise “reasonable” functions not fulfilling property (1). For instance, if we 
consider the functions, or classes of functions, suggested in Balinski and Young (1983), the class of 
objective functions dealt with in this paper includes class (1) in Balinski and Young but not their 
function (2). 

The functions fi may be of the same type for all values of i (i.e., fi(qi,xi)=f(qi,xi) ∀ i), but this is not 
necessarily the case. If the qi are the desired values for the variables xi and the fi are defined for the 
real numbers these can possess also the property 
(5) 

fi(qi,qi)=0 ∀ i. 

However, initially we only suppose property (1) to be fulfilled. 

The mathematical program PR1 can be solved by dynamic programming (being very similar to the 
knapsack problem). Now, we can write 

( ) ( ) ( )[ ] ( ) ( ) ∑∑
==

+=+−−=
ii x

k
ikii

x

k
iiiiiiiii qfqfkqfkqfxqf

11
0,0,1,,, δ  

with 

δik=fi(qi,k)−fi(qi,k−1).    (6) 
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Then 

δik ≤ δi,k+1,    (7) 

since 

[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ,1,1,
2
1,,1,1,,1, ⎥⎦

⎤
⎢⎣
⎡ ++−≤⇔−+≤−−⇔≤ + kqfkqfkqfkqfkqfkqfkqf iiiiiiiiiiiiiikiik δδ

which is property (1). 

Therefore, PR1 is equivalent to 

PR2 

[MIN] ( )∑∑ ∑
= = =

+=
m

i

h

k

m

i
iiikiks qfyz

1 1 1
.0,δ    (8) 

∑∑
= =

=
m

i

h

k
ik hy

1 1
.    (9) 

yi,k+1 ≤ yik   ∀ i; k=1,…,h−1,    (10) 

yik∈{0,1} ∀ i,k.   (11) 

We shall say that a sequence of δik, for a given h, is a well-ordered sequence (WOS) if and only if 

 [{δik<δi
′
k
′}∨ {(δik=δi

′
k
′)∧  (i=i′)∧ (k<k′)}]⇒ [δik precedes δi

′
k
′].   (12) 

In a WOS, the values of δ are nondecreasing and ∀ i k<k′ implies that δik precedes δik
′, since, by (7), 

either δik<δik
′ or δik=δik

′, and in the latter case the tie is resolved by placing δik before δik
′. Obviously, 

there always exists at least one WOS (and more than one if there are ties between different δ 
corresponding to two different elements of M, that can be resolved arbitrarily). 

Obviously, then, the solution which corresponds to the first h δik in any WOS is an optimal solution 
of PR2 and, therefore, of PR1 (property (7) and the definition of a WOS guarantees the fulfilment 
of constraints (10)). Furthermore, any optimal solution of PR2 (and, therefore, of PR1) corresponds 
to the first h δik in some WOS. 

Therefore, we can state the following: 

 
Theorem 1.  If the functions fi(qi,xi) possess property (1), then a solution is optimal for the function 
zS if and only if it corresponds to the first h elements of a WOS of the δik.And also the following: 
 
Corollary 1.  Given values of δik which fulfil condition (7), the solution determined by the first h 
values of a WOS optimizes the discrepancy function zS=∑i=1

mfi(qi,xi) with 
fi(qi,xi)=∑k=1

x
iδik+fi(qi,0).Here fi(qi,0) is an arbitrary constant which, if so wished, can be determined 

by imposing a condition such as (5). In such a case, 

fi(qi,0)=−φ i(qi), 

with φ i defined for the real numbers and such that 

( ) ∈∀=∑
=

xx
x

k
iki

1
δφ  
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We can also take fi(qi,0)=−δi1, instead of fi(qi,0)=− φ i(qi), and then fi(qi,1)=0 and fi(qi,xi)=∑k=2
x
iδik 

∀ xi ≥ 2. 

Moreover, the following is immediate: 

 
Corollary 2.  An optimal solution for zS=∑i=1

mfi(qi,xi) is also optimal for ZS=∑i=1
mFi(qi,xi), with Fi 

such that Fi(qi,k)−Fi(qi,k−1)=g(δik), where g is a monotonic nondecreasing function (we will use the 
notation Δik=Fi(qi,k)−Fi(qi,k−1)). 

The determination of the optimal solution does not require the calculation of all the δik; it is only 
necessary to determine the first h elements of a WOS, which can be done iteratively by using the 
following algorithm: 

GDMA: 

xi = 0    ∀ i;    θi = δi1   ∀ i. 

Repeat h times : 

 Find i*| θi = mini θi ; 

 xi* = xi* + 1; θi* = 1*, *+ixiδ  . 

If there are ties, when finding i*, these can be resolved arbitrarily. The execution of the algorithm 
implies 2m+h evaluations of the functions fi (since δik=fi(qi,k)−fi(qi,k−1)) and m·h comparisons. 

Let ZM(x1,…,xm)=maxi|xi>0δi,xi. The value of this function for a WOS, ZM
*, coincides with that of the 

δ occupying the position h; the solution defined for this sequence minimizes ZM because if there 

were a solution ix (i=1,…,m) such that 0|*
, >∀< iMxi xiZ

i
δ , there would then be at least h δik 

strictly smaller than ZM
*, contradicting the supposition that the sequence is well ordered. An 

analogous reasoning shows that the sequence defined by a WOS maximizes the function 
zM=miniδi,xi+1 (the value of which for this solution coincides with that of the δ occupying the 
position h+1 in the sequence). Therefore, we can state the following two corollaries: 
 
Corollary 3.  An optimal solution for zS also minimizes ZM=maxi|xi>0δi,xi. 

 
Corollary 4.  An optimal solution for zS maximizes zM=miniδi,xi+1 and therefore, if all the δ have the 
same sign, minimizes 

.1max
min

11

1,1, ++

==
ii xi

i
xiiMz δδ

 

The term GDMs is justified inasmuch as DMs can be regarded as a particular case of them. Indeed, 
in the latter the units are allocated following the nonincreasing order of the quotients qi/d(k−1), and 
in the GDM the nondiminishing order of the δik; then if we define the δik as follows: 

( )
i

ik q
kd 1−

=δ . 
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the nondiminishing order of the δik is a nonincreasing order of the qi/d(k−1). 

For example, for Jefferson's method δi,xi=xi/qi and for Adams's δi,xi+1=xi/qi. 

Consequently, the following well-known results (Balinski and Young, 1982, p. 105) are 
immediately obtained from Corollaries 4 and 3, respectively, 

Adams minimizes    .max
i

i
i x

q
 

Jefferson minimizes    .max
i

i
i q

x
 

(by Corollary 3, Jefferson minimizes maxi|xi>0(xi/qi), which is equal to maxi(xi/qi)). 

If the values of xi are bounded, the necessary modification of the optimization procedure of the 
discrepancy function is immediate; in particular, in the ApP the property quota, Q (the definition of 
which was given in Section 2), or the properties lower quota, LQ, ⎣ ⎦( )iqx ii ∀≥  or upper quota, 

UQ  ⎡ ⎤( )iqx ii ∀≤ , can be imposed on the solution. 

When there are boundary constraints, then on the whole the optimal solution does not coincide with 
the constrained one, but for each of these properties functions exist for which the nonconstrained 
optimal solution possesses the property (or for which an optimal solution possessing the property 
always exists). 

For example, let us consider the property Q. A sufficient condition for the existence of an optimal 
solution which is Q is 

⎡ ⎤ ⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ,,, 1 jiandji
jiji qjqiqjqi ∀≥∀≥ + δδδδ    (13) 

since a WOS then exists in which the units corresponding to ⎣ ⎦ii qx ≤  precede those corresponding 

to ⎣ ⎦ ⎡ ⎤iii qxq ≤<  and the latter precede those for which ⎡ ⎤ii qx > . Condition (13) is fulfilled, for 

example, for fi(qi,xi)=|xi−qi|c (c≥1) and for any function fi(qi,xi)=f(xi−qi) which is convex, 
nonnegative and such that f(0)=0. It is easy to see that the GDM procedure coincides for these 
functions with Hamilton's or the LF procedure (an alternative proof of this result can be found in 
Bautista et al., 1994). 

Let us now suppose that the functions fi have a diminishing branch (to the left of qi) and an 
increasing branch: 

⎣ ⎦ ⎡ ⎤ .100 +≥∀>≤∀< iikiik qkandqk δδ      (14) 

Consequently, in any WOS all units violating property UQ are located after those which are 
sufficient to satisfy LQ, and therefore, if an optimal solution violates UQ it satisfies LQ. We can 
then state the following: 

 
Theorem 2.  If the functions fi possess properties (1) and (14), the solutions which minimize zS 
possess property LQ or property UQ. 
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Let us now consider h as a parameter. In order for the procedure to be H it is sufficient for the order 
of the δik(h) not to depend on h; for this to be the case, it is sufficient for them to be able to be 
written as 

δik(h)=ρ(h)γ(i,k)+C, 

where ρ(h) is a function invariant in sign, γ(i,k) constants depending on i and k and C is a constant. 
This occurs, for example, with qi(h)=rih ∀ i and 

( )( ) ( )[ ]
( )hq

hqxxhqf
i

ii
iii

2

, −
=  

(since it gives 

( ) ( )
( ) ;2121212

−
−

=
−−

=
ii

i
ik r

k
hhq

hqkhδ  

the procedure coincides in this case with Webster's – recall Proposition 2), but not with 
fi(qi(h),xi)=|xi−qi(h)|c (c≥1). 

 

4. Examples 

Theorem 1 and the algorithm inferred from it (GDMA) allow us to optimize the function zS 
obtained by summing several fi possessing property (1), and also to ascertain whether the procedure 
coincides with some more specific procedure which is already known, while Corollaries 1 and 2, 
given a procedure belonging to the GDM class, allow us to determine functions fi for which it 
optimizes zS. 

At this point, we shall illustrate these possibilities with some examples. 

 

4.1. Optimization of given functions 

Once it has been ascertained that the functions fi possess property (1), all that remains is to 
calculate the δ and form a WOS (or apply GDMA). 

For example, for 

( ) ( ) ( ) ( )
( )1

1
1

1,,
2222

−
−=

−
−−

−
−

=
−

=
kk
q

k
qk

k
qk

x
qxxqf iii

ik
i

ii
iii δ  

and therefore, a sequence in nondiminishing order of the δ corresponds to a nonincreasing order of 

the quotients qi
2/k(k−1) or of the quotients ( )1−kkqi  which amounts to the same (i.e., the 

method coincides in this case with Hill's; recall Proposition 3). 

As a second example, if we consider the optimization of ∑i=1
m((xi−qi)/qi)2 we reach 

ii
ik qq

k 212
2 −
−

=δ . 

We have used this objective function and GDMA to calculate the number of workers to be assigned 
to working centers in a service system. 
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In another application (Bautista et al., 1996) we have used the function ∑i=1
nwi(qi−xi)2 to apportion 

h units of a family of products among the specific products belonging to it. 

 

4.2. Functions fi for which a procedure minimizes zS 

We shall study a number of methods, including the five traditional DMs. 

Firstly, let us take DMs with d(a)=a+α; this family of DMs includes Adams's (α=0), Webster’s 
(α=0.5) and Jefferson’s (α=1). 

From 

( )
ii

ik q
k

q
kd 11 −+

=
−

=
αδ  

we get 

( ) ( )[ ]ii
i

x

k
ikii xx

q
xqf

i

12
2
1, 2

1
−+==∑

=

αδ  

and minimizing ∑i=1
mf(qi,xi) is equivalent to minimizing 

( )[ ]∑
=

−+−m

i i

ii

q
qx

1

25.0 α
 

(recall the condition ∑i=1
mxi=h). 

In Hill’s procedure, ( ) iik qkk 1−=δ ; therefore, we immediately obtain 

( ) ( ).11,
1
∑
=

−=
ix

ki
ii kk

q
xqf  

Now, we can use Corollary 2, and with 

( ) .,,...,21
212 jiandmk ji

ik
ik ∀Δ≤Δ=−=Δ

δ
 

we get either 

∑
=

=
m

i i

i
S x

qz
1

2

 

or, given that ∑i=1
mxi=h, 

( )∑
=

−
=

m

i i

ii
S x

qxz
1

2

 

However, if we do Δik=δik
2, we get 

( ) ( ) ( ) ( )∑
=

−−−
=+−=

m

i i

iiii
Siii

i
ii q

qxqxzandxxx
q

xqf
1

2

33

2 11
3
1,  



11 

and for Δik=lnδik
2 (k=2,…,m) and Δi1≤Δj2 ∀ i,j: 

( ) ( )
)1(2

2!ln, −=
ix

ii

i
ii qx

xxqf  

and 

( ) ( )
( )( )

.
1

!ln!ln
1

21)(2

2

1
)1(2

2

∏∏
=

−−
=

− +Γ
==

m

i i
qx

ii

i
S

m

i
x

ii

i
S qqx

xzor
qx
xz

iii
 

where Γ is the Euler gamma function. 

Finally, let us consider Dean's procedure: 

( ) ( ) ( ) ( )
( ) ;

12
121;

21
1

ii
ik qk

kk
q
kd

k
kkkd

−
−

=
−

=
+
+

= δ  

if we do 

( ) .,,...,2
2

ln 21 jiandmk ji
ik

ik ∀Δ≤Δ==Δ
δ

 

we get 

( ) ( )
( )!12
2!ln, 12

13

−
= −

−

i
x
ii

x
i

iii xqx
xxqf

i

i

 

and 

( )
( )

( ) ( )
( ) ( )( )

.
1!12

22!ln
!12

2!ln
1

322

3

1
12

13

∏∏
=

−−

−

=
−

−

+Γ−
Γ

=
−

=
m

i ii
qx

ii

i
qx

i
S

m

i i
x
ii

x
i

S qxqx
qxzor

xqx
xz

ii

ii

i

i

 

Corollaries 3 and 4 can easily be applied to all these procedures. 

 

5. Conclusions 

The ApP is a classical problem with numerous and varied applications (the typical one being the 
apportionment of seats in a chamber of representatives). One way to approach it is the optimization 
of a discrepancy function. 

We have presented a more general formalization of the problem and we have proposed an 
optimization procedure for a very broad class of discrepancy functions; this procedure can be 
regarded as a generalization of the DMs, which have been developed in relation to the 
apportionment of seats, and also includes, as specific cases, other procedures for the apportionment 
of seats which do not belong to the DM group. We have also presented the properties of the 
procedure and, lastly, some examples of optimization of specific functions and of the determination 
of families of functions which are optimized by procedures that are a particular case of the general 
procedure proposed. 

One possible line of research is to extend or adapt the approach presented in this paper to the 
resolution of minmax problems. 
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